
Circuit Splits: Liability Reform and Likelihood of Environmental

Risk in the Hazardous Waste Industry

Leila Safavi*

March 23, 2022

Do firms factor in expected liability costs when entering contracts? This paper evaluates how joint
liability laws influence market structure through contracting decisions between upstream and downstream
partners. Using data on contracts from 2001-2017 between hazardous waste generators and disposal firms,
I investigate whether weak joint liability rules increase the market share of disposal firms with higher
rates of spills and accidents. I leverage a natural experiment created by the resolution of circuit split on
the extent of joint liability prescribed by the Comprehensive Environmental Response, Compensation,
and Liability Act (CERCLA) and compare market shares for accident prone disposal firms in circuits
where joint liability was weakened to those in circuits where expected liability costs of contracting were
not affected. I find that the difference in market share between dirty and clean firms grew 28.7% on
average in treated markets after the resolution of the circuit split with the greatest gains going to the
dirtiest firms. These results suggest that firms actively make contracting decisions based on expected
future liability costs and that removing joint liability rules may have significant effects on the likelihood
of environmental damages.

1 Introduction

All legal systems have provisions for apportioning liability in the case where a single harm may have been

caused by multiple tortfeasors. Motivated by the principle that the injure should bear the cost of the harm,

US courts have adopted a theory of “joint and several liability” whereby a victim may collect the entirety

of compensation for a harm from any subset of the defendants responsible for injury (Scheske). Economic

perspectives on joint liability beginning with Landes and Posner have largely focused on whether joint liability

schemes give rise to an efficient ex-ante level of precaution by firms in models where firms independently

choose activity levels that cause damages. However in cases where damages arise from contracted activity

between firms, for example carbon emissions throughout a supply chain, a firm can also minimize liability

exposure by choosing to contract with a partner who is likely to incur fewer damages. This paper asks how

joint liability rules affect aggregate levels of care within an industry through the margin of partner choice.
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Joint liability is present in many settings where a firm’s choice of partner affects the probability of

damages. Examples include franchise and franchisee relationship where the franchiser can be held liable for

labor violations at the franchisee, or contracts between manufacturers and distributors where distributors

can be held liable for product defects. The high-stakes setting explored by this paper is the arrangement

between producers of hazardous waste and the firms they contract for disposal. Under joint liability created

by the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), also known

as Superfund, producers of hazardous waste may pay for the cost of clean-up of contamination at the site of

their contracted disposal firm. I will refer to this kind of liability as “CERCLA liability” throughout. The

treatment, storage and disposal facilities (TSDFs) that manage hazardous waste comprise a highly regulated

$9.6 billion industry that handles 267.8 million tons of waste annually (McGinley). Firms operating in this

industry are subject to strict environmental regulation due to the high health risks associated with spills of

toxic chemicals (Vrijheid).

Following other trends in tort reform, judicial interpretation of CERCLA liability has weakened over time

(Brown). Using an extensive data set of hazardous waste contracts, I use a natural experiment created by

the resolution of a circuit split on CERCLA liability to study the impact of joint liability on partner choices

and find that relaxing joint liability lead to a 28.7% increase in the market share of violation-prone TSDFs.

This evidence is consistent with the theory that generators of hazardous waste respond to joint liability

schemes through the margin of partner choice; namely, after a negative shock to joint liability, generators

shifted contracts from cleaner partners towards partners with higher expected liability costs but lower prices.

This project contributes to a number of economic literatures. First, it contributes to a long, largely

theoretical literature on tort reform (Landes and Posner; Kornhauser and Revesz; Shavell; Tietenberg).

Recent work has sought to empirically test predictions of the impact of various liability schemes on outcomes

of interest, mostly in the medical or environmental context (Alberini and Austin; Chang and Sigman; Currie

and MacLeod; Avraham; Boomhower). This paper is the first, to my knowledge, to empirically estimate the

effects of tort reform on contracting decisions and to explicitly consider partner choice as the outcome of

interest. Second, this paper contributes to a literature on reputation incentives and their effects on market

composition (Mailath and Samuelson; Tadelis; Hörner; Crémer and Khalil; Kranton) which predicts that

firms have an incentive to produce high quality to maintain their reputations with consumers. I extend the

notion of reputation for quality to an environmental context and directly test whether joint liability affects

the returns to a good reputation.

This paper will explore how liability for environmental damages from hazardous waste affect the firm’s

contracting decisions. The following section explains the primary regulations in the hazardous waste market

and the history of joint liability within the industry. Section 3 sets up a formal model to capture the
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contracting decision by the firm and outlines conditions under which liability regimes affect partner choice.

The model predicts that weak liability rules will increase the market share of dirty firms. Section 4 outlines the

data and the construction of the joint liability measure. Section 5 explains the triple-differences econometric

strategy and the natural experiment. The penultimate section details the results from this natural experiment

and shows that the market concentration of dirty firms increases under weakened joint liability. Finally,

Section 6 concludes.

2 Background on Hazardous Waste Policy

2.1 Resource Conservation and Recovery Act

The Resource Conservation and Recovery Act (RCRA) of 1976 is the primary federal legislation in the United

States governing the management and disposal of hazardous waste. An all-encompassing piece of legislation,

RCRA proposed a comprehensive set of goals for reducing the health and environmental impacts of waste

disposal and established programs to oversee solid waste, hazardous waste and underground storage tanks.

Subtitle C, the hazardous waste management program of RCRA, created a “cradle-to-grave” regulatory

system that governs waste throughout its life cycle. Namely, Subtitle C (1) identifies and lists hazardous

wastes, (2) sets standards for waste generators, transporters and treatment, storage and disposal facilities

(TSDFs), and (3) establishes a permitting program that requires waste handlers to maintain records of all

waste transfers.

Enforcement of RCRA is handled by state regulators and the EPA and largely takes place through

facility evaluations. Firms with permits to handle hazardous waste are required to be inspected at least

once every two years during which inspectors assess whether firms are in compliance with the terms of

their permit. Permit violations can take place knowingly or unknowingly by the firm, i.e. RCRA is a strict

liability statute. For example, generators may violate permit standards by shipping waste to an un-permitted

treatment facility or a TSDF may be found in violation for improper storage. As a federal regulation, RCRA

established the minimum level of standards hazardous waste management. States can choose to adopt stricter

permit standards if they have been authorized by the EPA to manage their own waste program.

2.2 Comprehensive Environmental Response, Compensation and Liability Act

While RCRA establishes proactive regulations to avoid hazardous waste emissions, it is the Comprehensive

Environmental Response, Compensation and Liability Act (CERCLA) which addresses the remediation

of contaminated sites. More commonly known as “Superfund,” CERCLA was established in 1980 as a
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response to the discovery of a large number of abandoned, leaking hazardous waste sites, including the

tragedies at Love Canal and Valley of the Drums (Florio). CERCLA provided a two-pronged approach to

cleaning up hazardous waste spills. First, it created a $1.6 billion federal trust fund to finance and authorize

government clean-up of the most serious toxic sites in case of emergency or lack of a viable responsible party.

Second, CERCLA established a complex legal framework to assign liability for clean-up costs to potentially

responsible parties (PRPs) after a spill. The cost of liability for a PRPs can be incredibly high; the average

liability cost is $2,958,054, not including legal fees.

Because the liability structure of CERCLA is the primary focus of this paper, it is useful to understand

how liability functions in the hazardous waste industry. CERCLA liability provisions hold PRPs retroactively,

strictly, and jointly and severally liable for the clean-up costs of a hazardous waste site. Each feature of

the liability structure has strong implications. Retroactive liability allows firms to be held accountable for

past actions, and strict liability implies that firms can be liable for damage regardless of negligence. Most

importantly for this paper, joint and several liability implies that any one responsible party can be held liable

for the entire clean-up of the site if costs cannot be apportioned between the relevant parties. Specifically,

it is the joint and several liability feature of CERCLA that creates disincentives for generators of hazardous

waste to partner with “sloppy” disposers; if generator is found to be a responsible party, it may pay up to

the full cost of the damages caused by the disposer.

2.3 Arranger Liability Background

While the text of CERCLA outlines conditions under which firms qualify as a PRP and costs are divisible,

in practice these guidelines have been notoriously difficult to interpret for courts (Rasmussen). Particularly

contentious has been the “arranger liability” clause outlined in Section 107(a)(3) which states that generators

can be liable as “arrangers” if they arranged for the disposal or treatment of waste at the contaminated site.

If a generator is proven to be a PRP under arranger liability, then it will be subject to the joint and several

liability that requires them to potentially pay the full cost of contamination incurred at the disposer.

This article will exploit spatial and temporal differences in the judicial interpretation of arranger liabil-

ity to understand how joint liability incentivizes generators to partner with reputable firms. Here spatial

variation refers to differences in judicial interpretation across the thirteen US Circuit Courts, each of which

is assigned to hear appeals from the district courts within their geographical jurisdiction. Longstanding

differences between Circuit Courts are referred to as “circuit splits.” It is important to note that while

very few cases reach a Circuit Court, the decisions made at the appellate level have out-sized influence on

the decisions of lower courts. This paper will assume that Circuit Court rulings set standards for district
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courts in their jurisdiction. Over time, Circuit Courts may reverse previous decisions or be over-ruled by

the Supreme Court (Songer, Segal, and Cameron). Because this paper relies on changes over time in Circuit

Court interpretations of arranger liability for variation in treatment, it is helpful to understand what these

differences refer to and how they were resolved in 2009 by the Supreme Court.

The broadest interpretation of arranger liability asserts that those who arrange for disposal are subject

to strict liability, regardless of their control over the contamination (Brown; Rasmussen). For example, in

United States v. Aceto Agricultural Corp., the United States Court of Appeals for the Eight Circuit found

companies that supplied chemicals to a pesticide manufacturer liable for contamination at the manufacturer’s

site, despite the fact that spills were entirely caused by the manufacturer and chemicals were sold as useful

inputs in the pesticide production. Other courts came to a similar conclusion as Aceto, emphasizing that

intent for disposal was not required for arranger liability (Brown; Foy). Some courts, however, have taken

a narrower view of arranger liability that emphasizes whether generators intend to dispose of the hazardous

material. These courts consider the “useful product doctrine” as a defense to arranger liability, where

generators that sell a useful product containing hazardous materials are not considered to have an intent to

dispose (Henson).

The Supreme Court’s 2009 decision in Burlington Northern & Santa Fe Railway Co. v. United States

effectively resolved a nearly three-decade long circuit split on the scope of arranger liability (Brown). Ruling

in favor of the useful product doctrine, the Burlington Northern decision was considered to have such a

strong impact on CERCLA jurisprudence that it was referred to as a “Super Quake”(Judy). The Court

held Shell Oil Company not liable for clean-up costs as an arranger after Shell sold soil fumigant to an

agricultural chemical distributor, Brown & Bryant. Despite the fact that Shell was aware of and sold the

chemicals that contributed to the “sloppy practices” at Brown & Bryant, the Court argued that Shell was not

liable as an arranger because it did not intend for the soil fumigant to be disposed of during the transaction

with the chemical distributor. The Court’s decision emphasized that mere knowledge of or participation

in contamination was no longer sufficient for ascribing arranger liability, effectively overturning the broad

interpretation adopted by some circuits. While arranger liability remains litigated after Burlington Northern,

the decision was widely acknowledged to increase the difficulty in proving arranger liability (Brown).

3 Theory

This section introduces a model of the effect of joint liability reform on generator shipment decisions. This

model extends the standard tort model by explicitly accounting for the fact that under joint liability, the level

of care chosen by the firm is in part captured by their contracting decisions. In the hazardous waste context,
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generators invest in care both directly by making decisions regarding their own production and indirectly by

choosing to ship their waste to a treatment, storage and disposal facility (TSDF) with some known standard

of care. An existing literature on torts analyzes how ex-post liability can lead to inefficiencies where firms

will exert too little care in their own production choices relative to the social optimum (Kolstad, Ulen, and

Johnson; Shavell; Currie and MacLeod). However, the focus of this paper is to understand how liability, in

creating an additional transaction cost between the generator and the TSDF, can also increase the level of

care through the contracting decision. The addition of a new margin by which firms trade off costs and care

can affect the optimality of a ex-post liability scheme.

3.1 Model with one good and two firms

I examine a partial-equilibrium model of an upstream firm’s waste allocation in the context of heterogeneous

downstream firms and joint liability. For simplicity, upstream firms can be though of as waste generators

that produce a homogeneous good and face identical cost and production functions. The hazardous waste

byproduct of activity in the generator market is a fixed quantity q, which is subject to environmental

regulation. I normalize q to one for ease of notation. In this model, the firm is assumed to have a capacity

constraint regarding the amount of waste it can treat on-site, so it must ship waste off-site if the capacity

constraint is breached.

Consider the case of two possible downstream TSDFs, one of which, firm d, has a higher incidence of

spills than the other, firm c. The TSDF types, dirty and clean, respectively, are known to all generators.

The generators minimizes transaction costs by choosing a fraction α, of its waste to send to the dirty firm.

Formally,

min
α

TC = Cc(1− α) + Cd(α) + λ(Lc(1− α) + Ld(α)) (1)

where Cj(·) and Lj(·) are continuous, convex cost and expected liability functions associated with shipping

waste to firm j ∈ {c, d}. The clean firm has a lower expected probability of spills such that Lc < Ld, but

also charges more for its services so Cc > CD. I interpret liability as encompassing both the cost of damages

from contamination and any litigation costs.

The impact of of expected liability on the cost function is mediated by the joint and several liability

rule, 0 < λ < 1. When a complete joint liability regime exists λ equals one, and the full expected liabilities

of the TSDF are passed onto the generator. In the absence of any joint liability λ is equal to zero, and

the firm’s decision is identical to the simple ex-post liability outcome discussed above. It is impossible to

fully identify all the components which encompass λ, but I will assume any changes that narrow or broaden

the joint liability operate through this term. Specifically, λ will be increasing in the stringency of judicial
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interpretation of arranger liability discussed in Section II. Increasing the difficulty of ascribing arranger

liability, as in the case of Burlington Northern, will correspond to a decrease in λ as it makes it less likely

that a generator will be held liable for the clean-up costs of the TSDF.

3.2 Joint liability effect

The first order condition of this minimization problem shows that the generator will allocate waste between

the clean and dirty firm to equalize marginal shipping and liability costs. Re-arranging the first order

condition yields the following expression:

L′d − L′c =
C ′c − C ′d

λ
(2)

This equation shows that the joint liability rule essentially mediates the extent to which shipping costs

loom larger than liability costs in the generator’s decision. In the case of perfect joint liability, a dollar of

additional liability must be offset by a one dollar decrease in shipping costs. However, when λ < 1 in the

case of incomplete joint liability, differences in dirtiness between the dirty and clean TSDF must be much

larger to justify sending waste to the relatively higher shipping cost clean firm.

My empirical application examines the effect of a negative shock to the joint liability scheme on the

market share of dirty firms. It is straightforward to show that the model predicts a weakening of the joint

liability rule will lead to an increase in market share for the dirty firm, α. Taking a total derivative of the

first order condition and re-arranging terms, we find that

dα

dλ
=

−(L′d − L′c)
C ′′c + C ′′d + λ(L′c + L′d)

< 0 (3)

where the inequality follows from the assumption of convex costs. While assessing the impact of joint liability

directly on environmental outcomes is beyond the scope of this paper, another natural prediction from the

model is that environmental outcomes will worsen in states that experienced shocks to joint liabiliy.

4 Data

I construct a novel dataset on bi-annual hazardous material sales and regulatory enforcement outcomes

from 2003-2017 using publicly available data published by the EPA. The data collection is inspired by the

natural experiment created by the May 4th 2009 Burlington Northern ruling which weakened joint liability

in a subset of states across the United States by overruling the arranger liability interpretations of several
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circuits courts. To fully analyze the impact of the Supreme Court decision on the market share of dirty

hazardous waste treatment facilities, I collect information on all contracts entered before and after the

ruling, industry characteristics and a measure of “dirtiness” for each TSDF.

4.1 Universe of firms

Data on the universe of firms potentially subject to CERCLA liability come from the 2003-2017 Biennial

Report of the Resource Conservation and Recovery Act Information (RCRAInfo) compiled by the EPA.

Following the passage of RCRA in 1976, firms dealing with hazardous materials are required to register a

unique identifier with the EPA for each site and report their activities on a biennial basis, including the

quantity of waste generated, transported or treated. The full data provides a complete description of nearly

all operating sites and all trades of hazardous waste carried out between generators and receivers. This is the

first study, to my knowledge, to use the extensive contracting data contained in the RCRA Biennial Report.

There are 536,904 hazardous waste generators, 13,965 sites listed as received hazardous waste and

9,254,609 recorded trades between 2003-2017. Each site is considered a unique firm for the purposes of

this analysis. Counts of waste traded are annually reviewed by state environmental agencies before compi-

lation by the EPA and audited under threat of fine during quasi-random compliance visits by regulators.

As a quality check, I measure the degree of under-reporting by comparing the quantity sold listed by the

generator to the quantity bought listed by the TSDF. I find little evidence that generators under report

quantities sold. In instances where discrepancies arise, I keep the record of the transaction with the higher

listed quantity.

4.2 Market shares

The transaction data is used to construct the relevant outcome variable: hazardous waste market share of

the TSDF. This outcome variable requires me to first define a market, and second calculate the share of

hazardous waste produced by this market that is handled by the treatment facility. I define a market at the

narrow 4-digit NAICS by state level, and each generator is matched to a market. For example, generators

that are sited in Massachusetts and are in NAICS code 3254 are coded as being in a single market, the

Massachusetts medical manufacturing market. Panel B of Table 1 summarizes the features of each market

and how they differ across circuits with weak and joint liability.

A TSDF’s share of a given market is defined as the fraction of total trades handled by the facility, where

a trade corresponds to a shipment by the generator to the TSDF for a specific waste type and an intended

disposal method. For example, if the Massachusetts medical manufacturing market had 10,000 shipments of
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hazardous waste in 2009, and 5,000 shipments were received by a landfill in NJ, the 2009 market share of the

NJ landfill in the Massachusetts medical manufacturing market is 0.5. In the absence of data on the value

of trades between generators and TSDFs, the number of trades is a stronger proxy for market activity than

the total quantity which is recorded in tons. Wastes are treated in various forms and limited data on waste

management prices suggest a highly irregular relationship between total weight and cost of management

(Agency).

NAICS codes for each firm in the Biennial Report are constructed using a range of sources. Firms

are required to self-report their NAICS code when submitting the Biennial Report, Notification, Part A

disclosure, or other related EPA forms. I use the modal value of the first 4 digits of the reported code to

construct the firm-level NAICS code used in the market definition. I similarly use the modal value of the

first 3 digits to construct markets in a robustness check.

4.3 Regulatory enforcement

Data on site compliance with environmental statutes is obtained from the RCRA violations module. Sites are

listed in the module by their RCRA identifier with data on every inspection conducted between 1981-2017

and its outcome. 276,864 sites have listed inspections, and the average firm in our sample is evaluated 1.67

times a year and receives on average of 4.278 evaluations across the time they appear in the sample. Each

inspection lists the number and type of violations found at the site, if any, and the subsequent actions taken

by the firm and EPA to address the violation. I use the annual number of violations to determine whether

TSDFs are coded as “clean” or “dirty” and defer discussion of the full modeling process to Section 5.1. Panel

C of Table 1 describes how TSDF characteristics differ between clean and dirty firms.

4.4 Legal decisions

Court decisions regarding the “useful product defense” in establishing arranger liability as outlined in Section

107(a)(3) of CERCLA are manually collected from a review of 349 cases. Cases were eligible for review

through the following process. First, three landmark cases on the “useful product defense” were selected:

Burlington Northern & Santa Fe Ry. v. United States, United States v. Aceto Agricultural Chemicals Corp

and Cadillac Fairview/California Inc. v. United States. Second, any cases cited by the three major rulings

in passages on arranger liability were reviewed. Finally, any cases cited in relevant passages by the second

round of cases were reviewed. Only cases which were decided between the passage of CERCLA in 1980 to

the end of our sample in 2017 were considered.

Cases which presented a decision that hinged on the relevancy of the “useful product defense” for de-
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Table 1: Summary statistics of circuit, market, and TSDF characteristics, by circuit type

Panel A: Circuit characteristics

Control Treatment

Number of TSDFs 574 528
Number of markets 1,712 1,292
Number of states 18 17
Number of trades 2,159,771 1,948,057

Panel B: Market characteristics

Control Treatment

Number of TSDFs 27.702 27.921
(15.743) (17.898)

Number of generators 48.162 84.415
(100.737) (391.123)

Number of periods active 8 8
(0) (0)

Annual number of trades 11.04 11.363
(8.026) (9.23)

Fraction of trades contain priority chemicals 0.165 0.204
(0.114) (0.129)

Panel C: TSDF characteristics

Control Treatment

Dirty Clean Dirty Clean

Pre-2009 market share 0.096 0.069 0.094 0.071
(0.132) (0.108) (0.134) (0.114)

Annual number of trades 86.164 32.788 59.461 25.988
(167.528) (68.558) (94.114) (42.857)

Biennial violations 4.842 2.148 5.03 2.039
(9.013) (4.78) (9.05) (4.539)

Fraction of trades in manufacturing 0.499 0.387 0.472 0.374
(0.314) (0.386) (0.296) (0.348)

Fraction of trades with government 0.055 0.029 0.062 0.060
(0.171) (0.122) (0.162) (0.181)

Number of periods active 5.824 6.359 5.798 6.028
(2.417) (2.011) (2.368) (2.004)

Notes: This table summarizes the merged Biennial Report, judicial review and violations data used for
analysis in Section IV. The following observations are excluded: markets in non-contiguous US, trades with
non-NAICS matched generators, markets with only one generator and markets that are not persistent across
all 14 years. Data is summarized by circuit type, where narrow refers to a weak joint liability regime and
broad refers to a strong joint liability rule. Panels B and C display means with standard deviations below
in parentheses. Panel C list characteristics for TSDFs, by type, that handle waste in one of the two circuit
types. For example, the mean pre-2009 market share for dirty TSDFs that received trades for markets in a
narrow circuit is 0.102.
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termining liability were included in the final sample. These decisions analyzed the importance of intent,

knowledge and control of the generator in their arrangement to dispose of hazardous material, the relevance

of the original use of the material, and whether the material was a secondary or virgin product. Rulings on

other facets of arranger liability, for example, whether parent corporations can be held liable as arrangers,

were not included as they do not provide direct signals to the generators of interest on the probability of

settlement. The final sample includes 79 federal cases: 52 cases from district courts, 27 cases tried in US

Court of Appeals, and 1 case heard by the US Supreme Court. Cases from the two federal circuit courts were

not included. All states are affected by at least one of the lower court decisions, except Colorado, Kansas,

New Mexico, Wyoming and Louisiana. California, for example, has 19 relevant rulings.

After constructing the final sample of cases, I read through each case and coded whether the Circuit

Court’s decision supported the broad or narrow interpretation of arranger liability described in Section II.

Any potential ambiguities in the intentions of a Circuit Court’s ruling were resolved by reviewing the cases

of lower district courts within the circuit and through secondary legal literature (Brown; Foy; Henson; Judy;

Gray and Shimshack). Five circuits were coded as narrow and three as broad. Data from the three circuits

without an any Circuit Court decisions were excluded from analysis. Panel A of Table 1 shows that the

number of states and active firms are roughly balanced between the narrow and broad circuits.

5 Model

This paper uses a triple differences-in-differences design to capture the impact of the 2009 Burlington North-

ern ruling on the market shares of dirty firms in circuits where the joint liability was weakened. A simple

double difference would compare outcomes pre- and post-2009 and between circuits with narrow and broad

rulings. This specification would test a concentration hypothesis, namely whether market shares increased

on average in treated circuits after the ruling. However, the goal of this analysis is not to understand whether

the hazardous waste industry became more concentrated, but to determine if the share of waste allocated to

dirty firms increased. Testing this hypothesis requires the addition of a third difference, whether the market

share is held by a dirty or clean TSDF, to the specification.

5.1 TSDF reputation for environmental quality

In order to construct the third difference, I need to determine whether a TSDF is perceived as being a clean

or dirty type from the perspective of the upstream generator. The generator’s belief about the TSDF’s

type can be thought of as the reputation of the TSDF. I propose a measure of environmental quality that

constitutes the TSDF’s reputation and a model by which reputations are formed over time.
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Recall from Section 3.1 that dirty firms have a higher expected probability of accidents and that this

feature gives rise to the rank ordering of liability costs between the two types of firms, ie Ld > Lc. A

natural object of interest for the generator then is the probability of accident from contracting with a TSDF.

Formally, let there exist some threshold value v̄ ≥ 0 such that the risk of accident for TSDF i is defined as

Pr(vi > v̄), where vi is the number of accidents. When v̄ = 0, the risk of accident is simply the probability

that an accident occurs. In settings where accidents are common, it may be appropriate to set v̄ > 0 to

ensure that the probability measure has full support. Intuitively, v̄ > 0 implies a model where the generator

is only concerned about liability costs after some number of accidents.

I model the generator’s beliefs regarding the risk of accident from contracting with a TSDF using a

Bayesian learning processes. In this model, the generator does not know the TSDF’S true accident prob-

ability, πi. Instead, at the end of each period t the generator observes whether the TSDF’s number of

accidents vi,t exceeds the benchmark v̄ and updates their belief regarding the TSDF’s reputation. Each

draw of accident outcomes is assumed to be independent and comes from a stationary Bernoulli distribution

with parameter πi. Following DeGroot, the generator’s beliefs on the true distribution of accident risk is

then distributed Beta(α,β) such that the conditional expected probability pi of risk from TSDF i in period

t is

E[pi|Sit, t] =
Sit + α

t+ α+ β
, (4)

where Sit =
∑t
τ=1 1(viτ > v̄), and α and β are parameters which determine the distribution of initial beliefs.

I set the initial distribution parameters by matching the first two moments of the empirical accident

risk distribution to the first two moments of the Beta distribution (Davis; Gallagher). The empirical risk

distribution is constructed from the regulatory enforcement data from the EPA which records the number

of violations found during an inspection of the TSDF. Each violation is considered an “accident” and each

period corresponds to the two years prior to the report cycle; for example, generators in 2003 update their

belief for TSDF i after observing the TSDF’s number of violations from 2000-2001. The moment matching

approach assumes that generators set their initial expectation of accident risk using the mean risk of accident

for a TSDF. Conditional on being inspected, the probability that a TSDF has at least one violation is high.

As a result, I choose v̄ using the information set at 2001, the report cycle immediately before the beginning

of our sample, and let it equal the mean number of violations between 1999-2000. I show in Figure 4 in the

Appendix that the mean number of violations is near constant across report cycles over the sample period,

suggesting that it is an appropriate threshold for mapping accident counts into risk.

The result of Equation (4) is a biennial panel of accident risk. In econometric specifications where “dirty”
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Figure 1: Distribution of baseline TSDF accident risk
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Notes: Each observation in this histogram corresponds to the mean, pre-Burlington Northern, biennial,
accident risk for a TSDF. Only TSDFs used in analysis are included. Biennial accident risk for each
TSDF is constructed using Bayesian learning model in Section 4. Dashed lines delineate the risk
terciles.

is defined as a continuous variable, dirtyit is simply equal to the accident risk for TSDF i in report cycle

t. In order to translate the panel of accident risk into TSDF types, I estimate the mean, pre-2009 risk for

each TSDF and construct terciles from the mean baseline risk estimates; TSDFs in the first and third tercile

are coded as having clean and dirty reputations, respectively. Figure 1 shows the distribution of the mean

baseline risk and the cutoff points used to form each tercile. The results show significant variation in the

mean probability of risk among TSDFs, and the baseline risk of accident is at least twice as large for firms

with dirty rather than clean reputations.

5.2 Econometric specification

To estimate the impact of relaxing joint liability on the market share of the dirty firm, I estimate a triple

differences-in-differences design of the following form:

simcjt = βTreatjct + γt + γj + γc + φtj + φtc + φcj + εimcjt. (5)

Here simcjt refers to the log market share of firm i in market m in year t. The TSDF has a type j which

is either dirty or clean and receives waste from a market which lies in circuit c. Treatjct is an indicator
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for treatment that equals one if a market share-firm observation takes places after 2009, the market is in a

broad circuit c that had joint liability restricted by Burlington Northern and the firm is the dirty type j.

The coefficient of interest is β, which captures the treatment effect of relaxing joint liability for dirty

firms in markets affected by the 2009 Burlington Northern ruling. I include a rich set of fixed-effects,

including yearly fixed effect γt, a dirty firm indicator j and circuit dummy c which captures whether the

market operates in a circuit affected by Burlington. In preferred specification, I include market fixed effects

instead of circuit dummies. The difference in means between dirty and clean firms each year is captured by

the Y ear × Dirty, φtj . This fixed effect controls for the difference in incentives faced by dirty and clean

firms over time, for example changes in overall regulatory scrutiny or other EPA rulings on waste. The

Y ear × Broad fixed effect φtm, allows for firm-level market shares to vary each year between circuits with

narrow and broad interpretations of arranger liability, accounting for potential circuit-level shocks. Finally

the Broad×Dirty fixed effect φcj controls for the difference in mean market share for dirty firms between

and circuits with narrow and broad interpretations. If circuits with broad interpretations of joint liability

have other features which affect incentives for dirty firms, they will be captured by this fixed effect. All

standard errors are clustered at the market level.

I also estimate a dynamic-treatment effect to construct an event study for the effect of Burlington over-

time. The reduced form equation for the event study is estimated using

simcjt =

4∑
τ=−3

δτ1(t = 2009 + 2τ)Treatjc + γt + γj + γc + φtj + φtc + φcj + εimcjt. (6)

where simcjt is the log hazardous waste share of market m by firm i in year t. Treatjc is a dummy variable

for whether the market is in a circuit c that was affected by Burlington Northern and the firm’s type j is

dirty. 1(t = 2009 + 2τ) indicates the market share is recorded τ cycles after the Supreme Court ruling in

2009. I omit the year 2009, so all coefficients δτ measure differences in the treatment and control markets

relative to the year the ruling was made. All fixed effects are defined identically to those used in Equation

(4) and standard errors are clustered at the market level.

A recent literature discusses issues with identification and interpretation that may arise when the timing

is used to identify treatment effects. This study uses a control group that is never treated; narrow circuits

never experience further contraction (or expansion) of arranger liability and only broad circuits experience a

weakening of th joint liability regime. As a result, the specifications above do not suffer from the identification

issues that arise in conventional event-study designs with never-treated units (Borusyak and Jaravel) or

difference-in-differences designs with staggered timing (Goodman-Bacon). Variation in outcomes is identified

by firms that are either always or never treated, and not from firms that come in and out of treatment.
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5.3 Identifying assumptions

The key assumption for this analysis is that the market shares of dirty firms in treated markets would follow

a similar trajectory to those in untreated markets absent the Supreme Court ruling. Formally Equation (4)

is identified if the triple interaction term Treatjct is independent of the error conditional on the fixed effects:

E[Treatjctεimcjt|γt + γj + γc + φtj + φtc + φcj ] = 0. (7)

This assumption would be violated if, for example, there is an unobserved shock to municipal level R&D

which causes a large number of firms to enter a market. Mergers, bankruptcy or other supply shocks that

affect hazardous waste management prices and, in turn, contracting decisions may also lead to violations.

I take two steps to alleviate concerns surrounding the identifying assumption. First, I report an event

study graph of outcomes relative to the year Burlington Northern decision was announced. This graph

corresponds directly to estimates of δτ from Equation (5) and would identify pre-trends in treatment effects

prior to 2011. Because contracting decisions during 2009 are unaffected by the ruling, I take 2011 to be

the reference year. Public data on hazardous waste contracts indicate that the average contract length lasts

18-24 months, suggesting that firms would not be able to shift contracting decisions until 2011 at least

(Agency).

Second, we may be concerned that shocks to prices or overall market concentration will have an effect on

the trajectory of the dirty firm market share. One potential solution to this concern to restrict analysis to

larger markets that are less likely to see first order effects of such shocks. As a result, I report effects of the

treatment using a sample that includes all markets, as well as results from a restricted sample which only

includes a markets with a large number of TSDFs and generators.

6 Results

6.1 Effect of weak joint liability on waste share

Table 2 shows that weakened joint liability rules lead to a significant increase in the market share of dirty

firms in treated states. Column (1) uses data from all markets in the cleaned sample described in the notes

of Table 1 and estimates Equation (5). It shows that the difference in log market share between dirty and

clean firms grew 0.354 (SE 0.042) points on average in treated markets after Burlington Northern. This

effect translates to a 42.4% increase in the relative market share of dirty firms. Standard errors for all

columns are clustered at the market level. The remaining columns assess the impact of the liability regime
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Table 2: Impact of weakened joint liability on market shares of dirty firms

(1) (2) (3) (4)

Treat 0.354∗∗∗ 0.252∗∗∗ 0.199∗∗∗ 0.111∗∗∗

(0.042) (0.032) (0.045) (0.029)

FE Circuit Market Market Market, TSDF
Weighted No No Yes No

Markets 3002 3002 3002 3002
Observations 197,957 197,957 197,957 197,957
R2 0.040 0.408 0.343 0.511

Note: This table shows the results of four separate regressions of log market share
on a treatment indicator and a complete set of two and one-way fixed effects. The
specification corresponds to the triple-difference outlined in Equation (4) with mar-
ket fixed effects and standard errors clustered at the market level. A market is
defined at the 4-digit NAICS code and state level, and an observation is a share
the share of shipped hazardous waste received by a TSDF (treatment, storage, or
disposal facility). All Columns are estimated from the sample described in the notes
of Table 1.

change using finer fixed effects specifications. Column (2), the preferred specification, re-estimates Equation

(5) with market level fixed effects and finds a 28.7% increase the relative market share of dirty firms. This

estimate falls when observations are re-weighted by the number of market participants in Column (3) or when

TSDF fixed effects are included in Column (4). The TSDF fixed effects are not included in the preferred

specification as TSFS’s may have dramatically different market shares in different markets, due to distance

from the generator or industry needs. Taken together these results suggest that the market share of dirty

firms increased significantly relative to clean firms after joint liability regimes were weakened, although the

magnitude of this increase is sensitive to the exact specification of fixed effects.

Table 4 in the Appendix finds the weakened liability effect remains both statistically significant and large

after a number of alterations. Notably, I find the results found by the preferred specification are robust

to a number of alternate definitions of market share. Broadening the definition of a market to the 3-digit

NAICS code by state level, which mechanically increases the number of participants in each market, only

slightly decreases the magnitude of the result. I also find highly similar results when constructing market

share as the share of quantities traded instead of the fraction of trades, suggesting that the market definition

is effective in isolating similar types of transactions over time.

The results are also robust to different parameter specifications in the Bayesian learning model that are

used to identify whether is a firm has a dirty or clean type. I relax the assumption in Equation (4) that

firms operate with full information and allow them to discount past observations following the discounted

learning model in Gallagher. I find discounting has very little effect on the results. The similarity of the

result is unsurprising given that firms have easy access to TSDF’s violation history through the EPA’s ECHO
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database.

I also test whether the findings are sensitive to an alternate threshold value by setting v̄ = 0, which

alters the construction of the risk probability; when the threshold risk is zero, generators sort TSDFs into

dirty and clean categories based on the probability that they have any accidents in a given year (extensive

accident margin) as opposed to an above average number of accidents (intensive margin). Lowering the

threshold changes roughly a quarter of the TSDF types used in analysis and drops the point estimate to

0.095 (SE 0.029), suggesting that generators are re-allocating more waste to TSDFs that are likely to have

many accidents. This difference in effect sizes is consistent with a theory model where liability costs are

increasing in the number of accidents, but disposal costs are decreasing and generators trade off between

these two types of costs when selecting a partner. The smaller point estimate also indicates that the preferred

model of risk probability is picking up differences in TSDF types that are highly salient to firms.

6.2 Continuous treatment and heterogeneity

The triple-difference estimator identifies how the relative market shares shift between two different types of

firms–dirty and clean. While this econometric model is helpful in understanding how weakened joint liability

has affected market structure in the aggregate, it is not able to finely measure how generators trade off

between expected liability and disposal costs. To better understand whether market shares grew for TSDFs

with higher expected liability costs, I estimate a differences-in-differences model where the treatment varies

in intensity of the TSDF’s expected liability.

Specifically, I run a regression of the form

simct = β(Treatct ×Dirtyi) + γt + γm + φtc + εimct. (8)

where simct is TSDF i’s share of the market m in year t. The market lies in circuit c which either had

joint liability weakened or maintained by Burlington Northern. Treatct is a dummy variable that is one if

the share is for a market in a circuit where joint liability regime weakened and the share is observed after

the 2009 ruling. Each TSDF has a dirty score Dirtyi equal to their mean pre-2009 perceived probability

of accident risk such that Dirtyi is continuous and varies across TSDF. I include year γt, circuit γc and

year-by-circuit φtc fixed effects. Again, preferred specifications use market instead of circuit fixed effects.

The coefficient β captures whether TSDFs with higher perceived accident risk saw a greater change in

market share after the weakening of the liability regime. The results of Equation (8) are listed in Column

(2) of Table 3. Recall that the Dirtyi is the mean baseline probability that the TSDF has an above average

number of violations which ranges from 0-1. The coefficient in Column (2) indicates a 10 percentage point
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Table 3: Heterogeneous treatment effect of weakened joint liability on market share of dirty firms

(1) (2) (3)

Treat × Dirtyi 0.738∗∗∗ 0.496∗∗∗ 1.278∗∗∗

(0.050) (0.038) (0.151)

Treat × Dirty2
i −0.870∗∗∗

(0.163)

FE Circuit Market Market

Markets 3004 3004 3004
Observations 267,753 267,753 267,753
R2 0.026 0.398 0.398

Note: This table shows the results of three separate regressions of log market
share on a treatment indicator and a complete set of two and one-way fixed
effects. All specifications have clustered standard errors at the market level.
The specification corresponds to the triple-difference outlined in Equation
(8). Columns (1)-(3) define Dirty as the mean pre-2009 probability of having
an above average number of violations, where probability of above average
violations is generated for each TSDF every year according to the Bayesian
learning model in Equation (4).

increase in the perceived probability of risk led to a .0496 point rise in log market share. Put differently,

a 10 percentage point increase in expected probability of risk led market shares to increase by 5.1% after

the regime change, suggesting that gains from the weak joint liability rule are concentrated in the dirtiest

TSDFs. I also estimate a regression in Column (3) which includes a treatment dummy interacted with a

squared dirty score to estimate the curvature of the relationship between baseline risk probability and market

share. The coefficient on the squared interaction term is negative which indicates additional market share

gains from risk are limited.

The continuous measure of dirtiness used in Columns (1)-(3) of Table 3 and the binary types are all

fixed across time, which may be a problematic assumption if TSDFs change their level of risky behavior in

response to the Supreme Court ruling. In the scenario where firms change their behavior, the time invariant

Dirty score will misclassify the risk from transacting with a TSDF and both estimators may be biased if firms

selectively update their behavior. I can directly test if firms’ expected risk probabilities change over time by

comparing the average pre-2009 probability to the post-2009 probability for each firm. Figure 2 plots the

difference in post and pre-expected accident probability for all TSDFs used in analysis against their mean

baseline accident probability. If firms strategically update their behavior after the ruling, we would expect

the change in risk to be correlated with their baseline mean probability.

The blue line, a second order quadratic polynomial fitted to the data, suggests there is very limited

evidence for a relationship between baseline dirtiness and the change in accident probability. The fitted line

is nearly flat at zero, where there is a large mass of points Furthermore we can directly count the number
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Figure 2: Change in TSDF accident risk, pre- and post-Burlington Northern
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Notes: This figure plots the difference in mean, biennial, accident risk pre- and post-Burlington
Northern for each TSDF used in the double and triple-difference estimators. The x-axis lists the mean
baseline accident probability. Biennial accident risk for each TSDF is constructed using Bayesian
learning model in Section 4.

of firms whose mean expected accident probability changed so significantly as to change their type, ie those

firms that would be misclassified in the triple-difference estimator. I find that only 0.7% of TSDFs switch

from clean to dirty in the post period, and zero firms switch from being dirty to being clean. Taken together,

these results imply that firms are not strategically updating their accident behavior and that our results are

unlikely to ignore variation in generator beliefs from including time invariant dirty scores.

6.3 Lagged treatment effects

I plot event study graphs following Equation (6) for the triple-difference and double-difference estimators to

estimate how the treatment effect evolves over the sample period. Both the triple-difference in Panel A of

Figure 3 and the double-difference in Panel B show a similar trend over time: largely flat negative pre-trends

that become positive after 2013.

Prior to the passage of Burlington Northern in 2009, coefficients mostly negative and are not trending,

particularly in the double-difference estimator. The negative coefficient implies that the market share of

dirty firms relative to clean firms is smaller in markets with strong joint liability rules.The sign on these

coefficients is consistent with the theory that TSDFs are penalized for being dirty when joint liability passes

liability costs from the TSDF to the generator; coefficients that are statistically indistinguishable from zero
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or positive could suggest that generators are not attentive to joint liability rules. Fairly stable pre-trends

are suggestive that circuits with broad and narrow interpretations on joint liability are otherwise similar.

Interestingly, the relative market share of dirty TSDFs in treated circuits only begins to rise in 2015 when

it jumps to 35% in the triple-difference. This is a significant and large shift in overall market composition

that persists in 2015, and in the double-difference the effect even seems to slightly increase. The immediate

interpretation of this figure is that strong joint liability rules were preventing over a third of the trades from

going to dirty TSDFs, an estimate that is larger than the average treatment effects found in Tables ?? and

3 that also average across the zero treatment effects in 2011 and 2013.

Figure 3: Estimates of the effect of joint liability on market share
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Notes: This figure plots the effect of the relaxed joint liability ruling on market share for dirty firms
over time, relative to the reference year. Panel A and Panel B show different results for the triple
and double-difference estimators, respectively. Each point on the graph plots a coefficient δτ from
Equation (6) and dashed lines correspond to 95% confidence intervals clustered at the market (state
and 4-digit NAICS code) level. The dashed, red horizontal line indicates the average treatment effect.
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The event study suggests that generators do not immediately respond to the weak joint liability regime.

The lag in treatment effects can be explained if we consider that generators and TSDFs enter long contracts,

although I cannot directly confirm this hypothesis because we do not observe when contracts started or their

official length in the data. If I use the average length of US government contracts with hazardous waste

firms (18-24 months) (Agency), I can interpret Figure 3 as suggesting that Burlington Northern decreased

market shares in the second round of available contracting decisions. In addition to long contracts, there

are a number of reasons why generators may not have changed their behavior immediately. Generators may

have waited to see how Burlington was interpreted by lower courts, or the immediate economic relevance of

the decision may not have been salient.

7 Conclusion

While policy interventions have often focused on how firms can uphold a standard of care through investments

in their own production technologies, this paper argues that contracting decisions throughout a firm’s supply

chain also represent meaningful investments in environmental quality. A simple model shows that joint

liability is one reform that incentivizes investments along this margin; by shifting some fraction of the

expected liability of a firm’s partner into the firm’s own profit function, joint liability can force the firm

to trade-off greater cost savings with environmental quality and drive changes in the composition of the

partner’s industry. Using a natural experiment created by the resolution of a thirty year circuit split, I show

that weakened joint liability rules increase the market concentration of dirty relative to clean hazardous

waste facilities by 28.7%. These empirical results suggest that joint liability reforms can increase the overall

level of care taken by a supply chain.

This paper leaves open a number of avenues for further research. First, the triple-difference estimator

explores how the gap between mean market share increases between dirty and clean firms within treated

markets, however it does not explore the possibility for substitution in production across markets. If firms

operate multiple sites, they may shift production from areas of strict joint liability to those with weak

liability rules. Data on multi-site property ownership is available and could be incorporated in future work

to identify cross-site substitution patterns. Second, this paper takes the dirty firm’s market share as a

measure of negative environmental quality. A further step would be to estimate the impact of a change in

joint liability regime directly to observed environmental harms (e.g. waste spills) and whether changes in

market share explain variation in environmental outcomes. Public data on hazardous waste contamination

could be incorporated into the current analysis to estimate an instrumental variables model of joint liability

on damages. Finally, joint and several liability encourages firms to contract with partners with deep pockets.
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A generator level analysis of partner decisions that incorporates the relative size of the two partners would

be able to disentangle differing effects of joint and several liability for small and large firms.
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Appendix

A1 Bayesian learning model

Figure 4: Mean aggregate violations, 1991-2017
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Notes: This figure plots the average number of violations found in the two years prior to the listed
report cycle. The dashed horizontal line indicates the threshold value for accident risk v̄, which is set
to the mean number of violations found in 1999-2000. Bars around the mean refer to standard errors.

A2 Robustness checks

The significance and general magnitude of effect found by the triple-difference estimator is consistent across

a number of robustness checks.

A2.1 Market selection

Panel A of Table 4 reports results from the preferred specification after certain markets are excluded from

analysis. Column (1) restricts the sample to include markets with at least the median number of generators

and TSDFs. This condition effectively trims the sample to only include the largest markets by number of

participants and yields similar results to the base specification. This result suggests that the significance of

the results are unlikely to be driven by thinner markets where market share is more likely to be affected by

idiosyncratic features.

Column (2) examines whether treatment effects are concentrated within certain industries, specifically

the hazardous waste industry itself. While TSDFs receive and treat waste from nearly all other markets,

waste remediation, disposal and treatment firms also generate hazardous materials in the process of waste
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management. Often, these firms ship wastes off-site to other TSDFs. Since generators hazardous waste

markets are most likely to be subject to potentially confounding changes in hazardous waste policy, Column

(2) excludes hazardous waste markets from the sample and finds highly similar coefficient on the triple-

difference term to the base specification.

Column (3) tests whether results are sensitive to the inclusion of markets in California, the state with

the largest number of markets by far.

A2.2 TSDF selection

Column (4) restricts analysis to the market shares of TSDFs that are active in all eight report cycles. These

TSDFs are more likely to be downstream waste disposers as we classically think of them (eg landfills) than

other kinds of firms such as recyclers or hazardous material re-sellers that contract with hazardous waste

generators. The coefficient is half the size of the coefficient in our base specification, which is consistent with

the theory that Burlington Northern relaxed joint liability most explicitly for TSDFs that do not “intend”

to dispose of waste.

Table 4: Robustness checks for triple difference

Panel A: Market and TSDF selection

Thick markets No waste markets No CA markets TSDF in all cycles
(1) (2) (3) (4)

Treat 0.230∗∗∗ 0.261∗∗∗ 0.252∗∗∗ 0.123∗∗∗

(0.050) (0.033) (0.037) (0.035)

Markets 591 2900 2770 3002
Observations 83,236 186,920 169,894 172,467
R2 0.214 0.395 0.400 0.411

Panel B: Outcome, market and dirty definition

Level trade share Quantity share 3-digit NAICS v̄ = 0 Discounting
(5) (6) (7) (8) (9)

Treat 0.020∗∗∗ 0.237∗∗∗ 0.207∗∗∗ 0.095∗∗∗ 0.211∗∗∗

(0.003) (0.067) (0.040) (0.029) (0.028)

Markets 3002 3002 1619 3003 3004
Observations 197,957 197,943 142,302 201,452 184,450
R2 0.244 0.247 0.383 0.395 0.401

Note: This table shows the results of robustness checks for the results in Table 2. All regressions follow the preferred econometric
specification in Column (2) of Table 2 with slight differences. Columns (1-3) restrict the kinds of markets used in analysis, where (1)
only includes markets with above median number of generators and TSDFs, (2) drops any market with NAICS codes beginning in
56 to remove markets where generators are also in the hazardous waste industry, and (3) drops all markets in CA. Column (4) only
keeps market shares for TSDFs that have listed contracts in all eight report cycles. Columns (5-6) re-run the preferred specification
but use different definitions of market share: the level trade share instead of log and the share of quantity shipped, instead of share
of trades. Column (7) defines markets using three-digit NAICS code as a proxy for industry instead of the four-digit code used in
the main results. Columns (8-9) change the construction of the dirty dummy variable described in Section 5.1. Column (8) uses
terciles constructed from mean baseline risk probabilities where v̄ = 0, and Column (9) allow generators to discount past beliefs by
setting δ = 0.5.
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A2.3 Market share definition

Panel B shows that the findings are robust to alternative constructions of the key variables. Column (6)

constructs the market share to be the fraction of tons shipped in a market that is received by the TSDF,

instead of the fraction of trades listed within a market. The coefficient on Treat is strikingly similar to

preferred specification, suggesting that materials traded within a market are relatively homogeneous. Column

(7) defines a market at the 3-digit NAICS code by state level instead of using the 4-digit code to identify

the relevant industry and finds fairly similar results.

A2.4 TSDF type determination

Columns (8) and (9) alter how the TSDF type is constructed. In the former, the threshold for accident

risk is set to 0 such that TSDF type is determined by the probability that a firm has an accident, as

opposed to a relatively high number of accidents. In general, setting v̄ = 0 forces the firm to update their

beliefs regarding the intensive margin (the TSDF’s decision to violate) rather than the extensive margin (the

number of violations). Consider the case of a TSDF that routinely commits one violation per inspection; the

probability that this firm has at least one violation is near unity, but the probability that this firm has an

above average number of violations (roughly 3) is zero. Column (8) finds that market share of dirty TSDFs

increases by 9.97% relative to clean TSDFS in markets where joint liability was weakened by Burlington

Northern, a marked decreased from the 24% found in the preferred specification.

The model in Column (9) relaxes the assumption in Equation (4) that agents weight observations from

each period equally. Following Gallagher, I allow generators to discount observations from older periods in

constructing their beliefs by setting δ = 0.5. The results are very close to those found in the basic model in

Column (2) of Table 2.
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