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Patent litigation presents a puzzle. On the one hand, lawyers 
and legal academics spend a huge amount of time and 
attention on the intricacies of patent drafting and the proper 
construction of claims. On the other, empirical studies of 
patent litigation consistently find that the intrinsic 
characteristics of a patent have little relationship with its 
success or failure in invalidity proceedings. The conventional 
wisdom is that by the time they reach a decision on the 
merits, validity decisions—like much of patent litigation—are 
a largely unpredictable affair. 

In this paper, I use natural language processing to 
demonstrate that the conventional wisdom is incomplete. In 
fact, the content of patent claims is a surprisingly powerful 
predictor of invalidity decisions: the best performing model 
can correctly predict the outcome of nearly 73% of decisions  
in federal court, relying solely on the claim text of the 
disputed patent. This finding points to the potential of 
computational analysis to shed new light on patent validity 
and quality, and demonstrates the potential of predictive 
analytics in patent litigation. 

* Academic Fellow, Berkeley Center for Law and Business; Ph.D. Candidate, Jurispru-
dence and Social Policy, UC Berkeley; james.hicks@berkeley.edu. I am grateful to John 
Allison, Mark Lemley, and David Schwartz for sharing their hand-coded litigation 
outcomes and providing thoughtful feedback on the project. For helpful comments 
and conversations, I thank Adam Badawi, Kristelia García, Ryan Hübert, Sonia Katyal, 
Aniket Kesari, Justin McCrary, Peter Menell, Tejas Narechania, Julian Nyarko, Kevin 
Quinn, Rachel Stern, Molly Van Houweling, and participants at the 2020 virtual IP 
Scholars Conference. I also thank commenters at a CPIP retreat for feedback on an 
unrecognizably early version of this idea. This work was supported by a grant from 
Berkeley’s Law, Economics, and Politics Center.

DRAFT — AUGUST 19, 2020

mailto:james.hicks@berkeley.edu


 Informative Patents 2

I. INTRODUCTION 

Does the text of a patent convey important information in litigation? 
This seems, on the face of it, to be a strange question. Deciphering and de-
lineating the scope of the claimed invention is perhaps the central question of 
patent law. The preliminary stage of litigation, during which a patent’s writ-
ten claims are construed by the court—so-called Markman hearings—occupy 
a central place in patent commentary.  Landmark patent law cases involve 1

the rules for the proper interpretation of claim language.  As Mark Lemley 2
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  See, e.g., J. Jonas Anderson and Peter Menell, Informal Deference: A Historical, Empirical, 
1

and Normative Analysis of Patent Claim Construction, 108 NW. U. L. REV. 1 (2014) 
(summarizing inter alia the history of, and scholarly debate, on claim construction).

  See Phillips v. AWH Corp., 415 F.3d 1303 (Fed. Cir. 2005) (en banc) (holding that 2

words in a claim must be given their ordinary meaning in the context of the whole 
patent, as understood by a person skilled in the relevant art).
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puts it: when drafting a patent claim, “every word matters.”  And yet, when 3

it comes to empirical studies of patent litigation, scholars find something 
surprising: with remarkable regularity, the observable, intrinsic features of 
the patent have no apparent relationship with the disposition of questions of 
validity. 

How can we explain this apparent paradox? It could be that the process 
of selection into, and progression through, litigation results in a class of 
patents whose validity is highly uncertain to the litigants—coin flips, essen-
tially.  Alternatively, it could be that patents have become highly technical 4

scientific documents, largely impenetrable to juries (or even non-specialist 
district court judges) such that the actual text of the claims is, in practice, less 
important than other contextual factors of the litigation.  In this Article, I 5

suggest and test a third explanation: that the content of patent claims is con-
sequential, but our empirical tools have yet to identify that relationship. 

Embedded in this third explanation is a notion of “patent quality,” the 
identification of which has long been a question of interest to observers of 
the patent system.  Many economists and legal scholars have used litigation 6

 Mark A. Lemley, Without Preamble, 100 B.U. L. REV. 357, 364 (2020).3

  This is an implication of the well-known Priest-Klein hypothesis. See George L. Priest 4

and Benjamin Klein, The Selection of Disputes for Litigation, 13 J. LEGAL STUD. 1 (1984). 
I discuss questions of selection further in Part V, infra.

  Patent litigation is an unusual area of U.S. law in which juries are regularly called 5

upon to decide invalidity disputes, despite the fact that such decisions involve signifi-
cant questions of law. See Paul R. Gugliuzza, Law, Fact, and Patent Validity, 106 IOWA L. 
REV. (forthcoming 2020).

  A significant body of research, mostly in economics, focuses on observable character6 -
istics such as forward citations (references to the patent in future applications) as mea-
sures of a patent's contribution to the general stock of knowledge. See generally ADAM 
B. JAFFE & MANUEL TRAJTENBERG, PATENTS, CITATIONS & INNOVATIONS: A WIN-

DOW ON THE KNOWLEDGE ECONOMY (2002). Another line of research connects quali-
ty to value, searching for proxies and signals such as the payment of renewal fees or 
auction data. See, e.g., Christina Odasso, Giuseppe Scellato, and Elisa Ughetto. Selling 

Patents at Auction—An Empirical Analysis of Patent Value, 24 INDUS. & CORP. CHANGE 
417 (2015). However, in general, the extent to which a patent’s quality aligns with its 
value (either to society or to the patentee) is unclear. See John R. Allison, Patent Value, 
in 2 RESEARCH HANDBOOK ON THE ECONOMICS OF INTELLECTUAL PROPERTY LAW 47 
(Peter Menell and David Schwartz eds., 2019) (contending that “quality in many cases 
is a necessary but insufficient condition for value”).
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to search for reliable proxies for quality,  but the concept has proven some7 -
what elusive, and the selection effects inherent in all studies of litigation 
complicate efforts to generalize the findings to non-litigated patents.  In his 8

study of patent litigation involving non-practicing entities, Michael Risch 
concludes that “there were unobserved patent quality factors that affected 
whether to mount a challenge and whether that challenge was successful, but 
those quality factors are [not] on the face of the patent. . .”  It seems likely 9

that patent quality is indeed an important determinant of eventual success or 
failure in litigation, but whether or not we can observe it remains an open 
question. 

In this paper I demonstrate that some of those patent quality factors are, 
in fact, on the face of the patent, and that with modern computational text 
analysis tools we can identify them directly. To test this question, I combine 
an extant dataset of patent litigation outcomes with the claim text of litigated 
patents. Using a machine-learning technique,  I build a statistical model 10

which relates each validity decision to the prevalence of specific words in the 
claims of the disputed patent.  The results are striking, showing that court 11

decisions about patent validity are predictable to a much greater degree than 
has previously been recognized. With just the text of patent claims, a ma-
chine learning model can correctly predict 73% of invalidity outcomes in un-
seen “test” cases.  Combining the claim text with other metadata related to 12

the patent and the litigation improves the model’s accuracy further, although 
the text alone appears to encode much of the relevant information about the 
patent’s likelihood of success. 

In this paper, I make a series of contributions to the legal literature. 
First, I offer a new perspective on patent litigation, showing that it is more 

  See infra, Part II.7

  Allison, supra note __ at 73 (“…there are the many issues with selection effects and 8

unmeasurable explanatory variables that plague studies of . . . the outcome of litiga-
tion”).

 Michael Risch, A Generation of Patent Litigation, 52 SAN DIEGO L. REV. 67, 122 (2015).9

  Specifically, I use an algorithm called a “random forest,” which is a popular tool for 10

classification but is relatively novel in legal analysis. See Part III, infra.

  See Parts IV.A and IV.B, infra.11

  See Part IV.D., infra.
12
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predictable than previously thought. This is highly salient in the patent sys-
tem, which has long been decried by academics and commentators alike for 
its apparent lack of predictability.  As contingent-fee representation be13 -
comes a more significant part of the patent litigation landscape,  and the 14

cost of enforcing (or defending against) a patent claim continues to rise,  15

accurate forecasting is becoming an ever-more important tool in legal prac-
tice. Second, I shed new light on a possible way to measure patent quality—a 
long-held goal for researchers. Although a full picture of quality is limited by 
selection concerns, the findings here demonstrate for the first time that 
claim text contains significant information about the likelihood that a patent 
will survive a validity challenge. Finally, I contribute to an emerging litera-
ture in empirical legal studies that demonstrates the potential of automated 
text analysis to reveal previously undiscovered patterns in legal text. 

The balance of the paper proceeds as follows. In the next part, I discuss 
the current state of the empirical literature on patent litigation and patent 
quality. In part III, I describe the rise of computational methods in legal 
analysis, and situate this project within the emerging field. In part IV, I de-
scribe the data, my empirical strategy, and show how text can be used to 

  This (alleged) unpredictability takes many forms, including claim construction, jury 13

decisions, arbitrary Federal Circuit reversals, and recently, Supreme Court interven-
tions. See, e.g., Gretchen Ann Bender, Uncertainty and Unpredictability in Patent Litiga-

tion: The Time is Ripe for a Consistent Claim Construction Methodology, 8 J. INTELL. PROP. 
L. 175 (2001); John F. Luman III and Christopher L. Dodson, No Longer a Myth, the 

Emergence of the Patent Troll: Stifling Innovation, Increasing Litigation, and Extorting Bil-

lions, 18 INTELL. PROP. & TECH. L.J. (2006) (asserting that the outcome of patent cases 
is inherently unpredictable); Gugliuzza, supra note __ (“jury decisions on technologi-
cally complex questions of patentability can be unpredictable”); Christopher M. Hol-
man, Unpredictability in Patent Law and Its Effect on Pharmaceutical Innovation, 76 MO. L. 
REV. 645, 648 (2011) (noting a pervasive view in the pharmaceutical industry that 
patent enforcement has become “uncertain and unpredictable”).

  David L. Schwartz, The Rise of Contingent Fee Representation in Patent Litigation, 64 ALA. 14

L. REV. 335 (2012) (detailing the growth of a contingent fee patent litigation practice 
that is surprisingly diverse across firm types).

  See, e.g., Anne S. Layne-Farrer, The Cost of Doubling Up: An Economic Assessment of Dupli
15

-

cation in PTAB Proceedings and Patent Infringement Litigation, 10 LANDSLIDE 1 (2018) 
(noting that even for low-stakes patent litigation—with potential damages less than 
$10 million—the average cost to litigate to judgment was $2 million, with half of that 
amount incurred after discovery).
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predict litigation outcomes. Part V concludes with a discussion of the impli-
cations of this work, along with some important caveats and limitations. 

II. PRIOR STUDIES OF PATENT LITIGATION 

Two decades ago, John Allison and Mark Lemley published one of the 
first rigorous and comprehensive empirical examinations of patent litigation 
outcomes. They showed that around 46% of challenged patents were found 
invalid,  and that non-obviousness and novelty provided the statutory bases 16

for invalidity in the majority of decisions. Perhaps surprisingly, they also 
found no significant differences in invalidity rates between fields of inven-
tion. Since then, empirical studies have blossomed, exploring almost every 
aspect of litigation. Some of Allison and Lemley’s initial findings have 
proven remarkably robust; others have been overturned with the times. 

Scholars have since probed a wide variety of potential determinants of 
outcomes in patent litigation.  In an early study, two economists test the 17

relationship of a variety of patent attributes (number of claims, forward and 
backward citations, and patentee portfolio size) with both decisions to liti-
gate and litigation outcomes.  They find that “win rate outcomes are almost 18

completely independent of observed characteristics of patents and their 
owners.”  Legal scholars have paid closer attention to the characteristics of 19

the process itself. For example, Cotropia, Lemley, and Sampat find that char-
acteristics of the patent examination process are predictive: patents that were 
subject to re-examination are more likely to fail at litigation, all else equal.  20

 John R. Allison and Mark Lemley, Empirical Evidence on the Validity of Litigated Patents, 16

26 AIPLA Q.J. 185 (1998).

 This is a large field, and the highly selective survey here serves to give a sense of the 17

most important findings. For a recent summary of the broader literature, see Ronald 
Mann and Christopher Cotropia, Empirical Studies in Patentability, in 2 RESEARCH 
HANDBOOK ON THE ECONOMICS OF INTELLECTUAL PROPERTY LAW 281 (Peter Menell 
and David Schwartz eds., 2019).

  Jean O. Lanjouw and Mark Schankerman, Enforcement of Patent Rights in the United 
18

States, in PATENTS IN THE KNOWLEDGE-BASED ECONOMY 145 (Wesley M. Cohen and 
Stephen A. Merrill eds., 2003). 

  Id. at 172.19

 Christopher A. Cotropia, Mark Lemley, and Bhaven Sampat, Do Applicant Patent Cita
20

-

tions Matter?, 42 RES. POL’Y 844 (2013).
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Similarly, Lemley, Li, and Urban consider the role of judicial experience, and 
note that district court judges who have more experience with patent cases 
are more likely to find non-infringement—though, interestingly, not invalid-
ity.  Another notable change from the early studies is a growing discrepancy 21

between industries and technology areas. In a 2012 paper, for example, Alli-
son et al. find that “internet patents” (a subset of software patents) fare re-
markably poorly, with overall patentee win rates of just 3% in their decade-
long dataset.  22

Allison and Lemley, this time with David Schwartz, returned to these 
questions in a trio of articles that explore patent litigation that commenced 
at the end of the 2000s.  Using a careful hand-coding of all merits decisions 23

in cases initially filed in 2008 and 2009, they find evidence that jurisdiction 
makes a difference to case outcomes, as do some characteristics of the 
lawyers and judges involved.  They confirm prior wisdom that certain kinds 24

of patents are less likely to be found invalid—particularly those relating to 
pharmaceuticals—and also observe that patentees lose nearly 75% of cases 
that are litigated to judgment.  In the third study, the authors analyze the 25

role of non-practicing entities (NPEs) in litigation, finding that operating 
companies generally experience better outcomes in litigation than pure 

  Mark Lemley, Su Li, and Jennifer Urban, Does Familiarity Breed Contempt Among Judges 
21

Deciding Patent Cases?, 66 STAN. L. REV. 1121 (2014).

  John R. Allison, Emerson H. Tiller, Samantha Zyontz, and Tristan Bligh, Patent Litiga
22

-

tion and the Internet, 2012 STAN. TECH. L. REV. 3. See also Lemley et al., supra note __ at 
1144–50. 

 John R. Allison, Mark Lemley, and David L. Schwartz, Understanding the Realities of 
23

Modern Patent Litigation, 92 TEX. L. REV. 1769 (2014); John R. Allison, Mark Lemley, 
and David L. Schwartz, Our Divided Patent System, 82 U. CHI. L. REV. 1073 (2015); John 
R. Allison, Mark Lemley, and David L. Schwartz, How Often Do Non-Practicing Entities 

Win Patent Suits?, 32 BERKELEY TECH. L.J. 235 (2017).

 Id., Understanding the Realities, at 1799.24

 Allison et al., Divided Patent System, supra note ___ at 1112.25
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patent-assertion entities.  However, the authors caution that much of the 26

effect is down to software patents, where NPEs are overrepresented as liti-
gants, but no patentee fares well. Beyond this study, the role of NPEs has 
been the subject of significant recent scholarly attention,  with a mixed pic27 -
ture being drawn. Michael Risch, for example, finds that claims asserted by 
NPEs are settled at much higher rates than those by practicing entities, and 
that those that make it to a merits hearing see their patents held invalid at 
higher rates.  28

Finally, in work most closely related to this Article, several papers have 
used litigation outcomes to explore the question of patent quality. Jonathan 
Ashtor develops a measure of the “informational content” of a patent, which 
combines various facially observable characteristics of the patent: number of 
claims, length of written description and abstract, number of inventors, and 
so on.  He first creates a set of weights by relating these variables to the 29

number of forward citations (that is, citations to the patent by future appli-
cants—a traditional measure of patent value for economists). He then tests 
that weighted index against validity decisions, finding that patents with 
more “informational content” are less likely to be invalidated.  30

 Allison et al., Non-Practicing Entities, supra note ___. Non-practicing entities are often 26

referred to variously as “patent assertion entities” (PAEs) and “patent trolls.” The um-
brella terms represent a range of entities, including universities, individual inventors, 
and failed startups. Of particular note are patent-holding companies: PAEs who pur-
chase patents and subsequently assert them in litigation, but who are not themselves 
involved in research and development or other innovative activities. There is some 
controversy over the social costs and benefits of such entities. See, e.g., Christopher A. 
Cotropia, Jay P. Kesan and David L. Schwartz, Unpacking Patent Assertion Entities 

(PAEs), 99 MINN. L. REV. 649 (2014). Regardless of one’s position on this debate, from 
the perspective of litigation, there seems good reason to expect that they would be-
have in ways that are systematically different to other types of patent owner.

  See, e.g., Shawn Miller, et al., Who’s Suing Us? Decoding Patent Plaintiffs since 2000 with the 
27

Stanford NPE Litigation Dataset, 21 STAN. TECH. L. REV. 234 (2018).

  Risch, supra note __.28

 Jonathan H. Ashtor, Does Patented Information Promote the Progress of Technology?, 113 29

NW. U. L. REV. 943 (2019).

  Id. at 980–85.30
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Meanwhile, Ronald Mann and Marian Underweiser explore validity 
decisions at the Federal Circuit.  Operationalizing patent quality as propen31 -
sity to be held valid, the authors find that features of the patent’s prosecution 
history are highly correlated with outcomes. (For example, a greater number 
of continuations and examiner-added prior art references are positively re-
lated to findings of invalidity. ) A particularly interesting feature of this pa32 -
per is its text-based measure of the “alignment” between the patent’s written 
description and its claims.  Although this metric has somewhat limited sub33 -
stantive application—alignment between the description and the claims are 
only relevant to a narrow subset of doctrinal bases of patent validity —it is 34

an intriguing early approach to incorporating the text of a patent directly 
into a model of litigation. 

So, with all these studies, what do we know? While different scholars 
have emphasized quite different characteristics, we can draw some general 
conclusions. Certain factors seem reliably predictive of litigation outcomes. 
There are clear industry effects—for example, pharmaceutical patents are 
struck down at much lower rates than others, all else equal.  Jurisdiction 35

effects, too, have been shown to be important, though the specifics are 
somewhat mixed.  Conversely, studies have generally found that forward 36

citations provide little information about invalidity (or infringement) deci-
sions. 

 Mann and Underweiser, supra note __.31

  Id. at 20–21.32

  See infra, Part III, for more general discussion of text-based “similarity” measures.33

  35 U.S.C. § 112 (2011).34

  Allison et al., Divided Patent System, supra note __ at 1114.35

  Id. For example, the Eastern District of Texas has long been thought to be patentee 36

friendly. See Ofer Eldar and Neel Sukhatme, Will Delaware Be Different? An Empirical 

Study of TC Heartland and the Shift to Defendant Choice of Venue, 104 CORNELL L. REV. 
101, 110-18 (2018). But see Lemley et al., supra note __ (finding that, for patent own-
ers, D. Del. has generally been a more favorable venue than E.D. Tex., after condition-
ing on judicial experience). 

 As Eldar and Sukhatme describe, a recent Supreme Court decision limits plaintiff fo-
rum selection in patent suits and appears likely to change this effect in the future. Its 
full effect remains to be seen. See TC Heartland, LLC v. Kraft Food Brands Grp. LLC, 
137 S. Ct. 1514 (2017) (requiring that patent infringement suits be brought in the de-
fendant company’s district of incorporation).
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Most importantly for the project at hand, these studies generally find 
that observable attributes of the patent itself hold little to no explanatory 
power. As Risch summarizes: “. . .predicting which patents were invalidated 
had more to do with case-specific factors, such as the number of defendants, 
than with objectively measurable patent quality indicators.”  The other fea37 -
ture that unites nearly all of these models, however, is that they are generally 
not very successful at explaining the data. Despite significant data collection 
and a host of theoretically justified covariates, tested across multiple different 
studies, the explanatory power of the regression models is consistently poor. 
As Allison, Lemley, and Schwartz conclude: “The pseudo R2s in our regres-
sions . . . are very low, revealing that most of the variation in patent litiga-
tion outcomes is not predictable, at least based upon the extensive variables 
we captured.”  38

All this prompts several questions. Are patent litigation outcomes truly 
unpredictable? Are we missing potentially valuable sources of information? 
In the next Part, I describe the computational methods that offer new ways 
to explore these questions. 

III. COMPUTATIONAL ANALYSIS IN LAW 

Legal analytics is a growing subfield both within law generally, and in-
tellectual property specifically. The use of machine learning tools for text 
analysis has dramatically increased across the social sciences, but the tools 
hold particular promise in empirical legal studies—a field where we have 
large troves of text that, although highly salient, have until now been diffi-
cult to study empirically.  A set of machine learning approaches, referred to 39

as natural language processing (NLP), enable rapid and flexible processing of 

 See, e.g., Risch, supra note __ at 131.37

  Allison et al., Modern Litigation, supra note __ at 1799. Interesting, one feature of 38

patent litigation—damages awards—does seem to be reasonably predictable, based on 
observable features of the patent and litigants. See Michael J. Mazzeo, Jonathan Hillel 
& Samantha Zyontz, Explaining the "Unpredictable": An Empirical Analysis of U.S. Patent 

Infringement Awards, 35 INT’L REV. L. & ECON. 58, 67 (2013).

  For a broad introduction to this emerging field, see LAW AS DATA: COMPUTATION, 39

TEXT, & THE FUTURE OF LEGAL ANALYSIS (Michael A. Livermore and Daniel N. 
Rockmore eds., 2019).
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large quantities of text, allowing researchers to detect new and sometimes 
counterintuitive patterns in various kinds of legal documents.  40

Within intellectual property, scholars have begun to employ creative 
uses of NLP in an effort to conceptualize and measure underlying legal doc-
trines. For example, a team of computer scientists and business school facul-
ty have developed a measure of “novelty” that is based on the first entry of a 
word into the patent corpus.  Similarly, Jeffrey Kuhn and Neil Thompson 41

propose a measure of patent scope that counts the number of words in the 
first claim of a patent.  The development of “similarity” measures is another 42

active area of research. These metrics are based on the geometric distance 
between bodies of text, which are represented as (vast) vectors of words.  43

For example, Laura Pedraza-Fariña and Ryan Whalen compute scores of the 
mathematical similarity between the texts of thousands of patent pairs, and 
use those scores to derive a network-based measure of the non-obviousness 
doctrine.  Ashtor uses a similar pairwise approach in an effort to create a 44

synthetic, algorithmic alternative to forward citations.  45

My goal in this paper is somewhat different. Rather than recovering 
algorithmic measures of particular patent doctrines, my interest is to explore 
the variability of certain patent litigation outcomes. This is a different appli-

  See generally Jens Frankenreiter and Michael Livermore, Computational Methods in Legal 
40

Analysis, 16 ANN. REV. L. & SOC. SCI. __ (2020).

 Benjamin Balsmeier, et al., Machine Learning and Natural-Language Processing on the 
41

Patent Corpus: Data, Tools, and New Measures, 27 J. ECON. & MGMT. 535 (2018).

 Intuitively, more words narrows the scope of a claim because—in general—a compet42 -
ing product must practice every element of the claim to infringe. Jeffrey M. Kuhn and 
Neil C. Thompson, How to Measure and Draw Causal Inferences with Patent Scope, 26 IN-

T’L J. ECON. BUS. 5 (2019).

  For a thorough explanation of this approach as applied to patents, see Kenneth A. 43

Younge and Jeffrey M. Kuhn, Patent-to-Patent Similarity: A Vector Space Model (working 
paper, 2016), https://dx.doi.org/10.2139/ssrn.2709238.

 Laura G. Pedraza-Fariña and Ryan Whalen, A Network Theory of Patentability, 87 U. 44

CHI. L. REV. 63 (2020). Whalen in particular is at the leading edge of network-based 
computational approaches to innovation law. See, e.g., Ryan Whalen, Boundary Span-

ning Innovation and the Patent System: Interdisciplinary Challenges for a Specialized Exami-

nation System, 47 RES. POL’Y 1334 (2018); Ryan Whalen, Legal Networks: The Promises 

and Challenges of Legal Network Analysis, 2016 MICH. ST. L. REV. 539.

  Jonathan Ashtor, Investigating Cohort Similarity as an Ex Ante Alternative to Patent For
45

-

ward Citations, 16 J. EMPIRICAL LEGAL STUD. 848 (2019).
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cation of computational analysis to prior work in IP,  but the underlying 46

tools are similar. I treat the question as one of prediction, and ask: given in-
formation about the text of a patent, how well can we predict its likely valid-
ity? 

Typically, empirical studies of litigation use regression analysis of some 
form in order to describe the correlates of an outcome or draw causal infer-
ences.  By contrast, the use of machine learning approaches to prediction 47

  There is, however, some intriguing early work in computer science which incorpo46 -
rates text features in a model of selection into litigation. See Papis Wongchaisuwat, 
Diego Klabjan, and John McGinnis, Predicting Litigation and Time to Litigate, PROC. 
16TH ANN. CONF. INT’L ASS’N ARTIFICIAL INTELLIGENCE & L. 257 (2017).

  Traditionally, the researcher specifies a fixed (usually linear) model of the relationship 47

between the outcome and a set of inputs—say, between plaintiff win rate and the ju-
risdiction hearing the case. (Usually this is provided by a theoretical model or some 
other domain-specific knowledge.) They then collect a sample of data, feed it to the 
model to produce estimates, and then assess how well it performs (how confident they 
are) using various goodness-of-fit tests. By contrast, the “algorithmic” culture of much 
modern statistics eschews theory, treating the structure of the relationship between 
inputs and outcomes as a priori unknown. Instead, researchers allow a statistical algo-
rithm to “learn” the best model, and then validate performance by challenging the cali-
brated algorithm to predict outcomes from unseen data. This is a deep methodological 
divide. For a lively and classic discussion of the “two cultures” within (and beyond) 
statistics, see generally Leo Breiman, Statistical Modeling: The Two Cultures, 16 STATISTI-

CAL SCI. 199 (2001).
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and classification is quite novel in empirical legal scholarship.  One tech48 -
nique that has been deployed fruitfully is a classification tree (a type of deci-
sion tree).  Unlike a traditional logistic regression, a decision tree doesn’t 49

require any ex ante information about the structure of the relationship be-
tween the outcome and the predictors of interest. Instead, it partitions the 
outcome into an optimal set of “leaves,” which are connected by “branches” 
that reflect the flow of a series of if-then logical decision rules.  50

A landmark study uses decision trees to classify the outcome of 
Supreme Court cases, based on characteristics of each case and its procedural 
history.  The model was remarkably successful, correctly predicting 75% of 51

case outcomes in the 2002 term—and significantly outperforming the panel 
of expert lawyers and academics who attempted the task in parallel. In the IP 
context, Cowart et al. demonstrate the potential of classification trees to im-

  The critical literature on machine learning in law, on the other hand, is young but 48

voluminous. Scholars at the intersection of law and technology, discrimination, and 
the criminal legal system have been particularly trenchant critics of the rise in algo-
rithmic decision making and its troubling social consequences. See, e.g., Solon Baracas 
and Andrew Selbst, Big Data’s Disparate Impact, 104 CALIF. L. REV. 671 (2016) (noting 
the disparate impact of algorithmic approaches to employment discrimination which 
are based on historic patterns of prejudice); Rashida Richardson, Jason Schultz, and 
Kate Crawford, Dirty Data, Bad Predictions: How Civil Rights Violations Impact Police Data, 

Predictive Policing Systems, and Justice, 94 NYU L. REV. ONLINE 192 (arguing that widely 
deployed predictive policing algorithms learn from, and help to perpetuate, past bias); 
Danielle Keats Citron and Frank Pasquale, The Scored Society: Due Process for Automated 

Predictions, 89 WASH. L. REV. 1 (2014) (arguing that individuals should be afforded 
meaningful opportunities to challenge the harmful impacts of algorithmic risk scores); 
FRANK PASQUALE, THE BLACK BOX SOCIETY: THE SECRET ALGORITHMS THAT CON-

TROL MONEY AND INFORMATION (2015). But see Talia B. Gillis and Jann L. Spiess, Big 

Data and Discrimination, 86 U. CHI. L. REV. 459 (2019) (arguing that machine-derived 
decision rules can provide a framework for testing algorithmic discrimination); W. 
Nicholson Price and Arti Rai, Clearing Opacity Through Machine Learning, 106 IOWA L. 
REV. __ (forthcoming) (arguing that machine learning has the potential to shed light 
on non-intuitive, complex systems in the biomedical sciences).

  See Jonathan P. Kastellec, The Statistical Analysis of Judicial Decisions and Legal Rules with 
49

Classification Trees, 7 J. EMPIRICAL LEGAL STUD. 202 (2010).

  Id. at 209–13.50

  Theodore W. Ruger, Pauline T. Kim, Andrew D. Martin, and Kevin M. Quinn, The 
51

Supreme Court Forecasting Project: Legal and Political Science Approaches to Predicting 

Supreme Court Decisionmaking, 104 COLUM. L. REV. 1150 (2004). 
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prove the clarity of models of patent litigation.  Despite their flexibility, 52

however, decision trees have a tendency to “overfit” to the data, often failing 
to predict future cases. In more recent work, a legal analytics research team 
use a methodological extension of decision trees—random forests—to suc-
cessfully forecast the resolution of employment law litigation based on ob-
servable characteristics of the cases.  53

This latter project is also interesting for its incorporation of case fea-
tures that are extracted directly from the text of docket sheets. This is an in-
creasingly common approach. Beyond the IP examples mentioned above, 
applications of automated text analytics are finding increased use in empiri-
cal approaches to law. For example, Julian Nyarko, David Pozen, and Eric 
Talley use the text of the Congressional Record to demonstrate the changing 
partisanship of “constitutional” political language over two centuries.  El54 -
liott Ash and various collaborators use the text of written opinions to ex-
plore and classify judicial ideology.  In the corporate context, Adam Badawi 55

shows that the text of complaints can be used to predict the outcome of secu-
rities litigation.  56

  Tammy Cowart, Roger Lirely, and Sherry Avery, Two Methodologies for Predicting 
52

Patent Litigation Outcomes: Logistic Regression Versus Classification Trees, 51 AM. BUS. L.J. 
843 (2014) (highlighting the interpretative and flexibility advantages of classification 
tree analysis).

  Charlotte S. Alexander, Khalifeh al Jadda, Mohammad Javad Feizollahi, and Anne M. 53

Tucker, Using Text Analytics to Predict Litigation Outcomes, in LAW AS DATA: COMPU-

TATION, TEXT, & THE FUTURE OF LEGAL ANALYSIS 271-308 (Michael A. Livermore 
and Daniel N. Rockmore eds., 2019).

  David Pozen, Eric Talley, and Julian Nyarko, A Computational Analysis of Constitutional 
54

Polarization, 105 CORNELL L. REV. 1 (2020).

  See, e.g., Elliott Ash and Daniel L. Chen, What Kind of Judge is Brett Kavanaugh?, 2018 55

CARDOZO L. REV. DE NOVO 70; Carina I. Hausladen, Marcel H. Schubert, and Elliott 
Ash, Text Classification of Political Ideology Labels in Judicial Opinions, 62 INT. REV. L. 
ECON. 1 (2020).

  Adam Badawi, How Informative is the Text of Securities Complaints? (unpublished 56

manuscript) (October 1, 2019) (on file with author). See also Adam Badawi and Elisa-
beth de Fontenay, Contractual Complexity in Debt Agreements: The Case of EBITDA (Duke 
Law School Public Law & Legal Theory Series No. 2019-67, 2019), https://dx.doi.org/
10.2139/ssrn.3455497 (using NLP to analyze EBITDA definitions in credit agree-
ments).
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The approach I use here mirrors these recent legal NLP applications. I 
treat the claim text of a patent as a proxy for a (latent) measure of quality, 
and explore its relationship with invalidity decisions. In brief, my strategy is 
to break down the patent claims into their constituent words, and use the 
prevalence of those words in a given patent (with some adjustments) to pre-
dict the likelihood of success or failure in a validity adjudication. In Part IV, 
infra, I describe these steps in more detail, and introduce the dataset of litiga-
tion that I use.  

IV. PREDICTING INVALIDITY 

A. Data 

The litigation data used in this analysis come from a set of recent stud-
ies of patent litigation conducted by John Allison, Mark Lemley, and David 
Schwartz. I refer the reader to those authors—in particular the first paper in 
their trilogy, Understanding the Realities of Modern Patent Litigation—for a full 
description of their careful hand-coding procedure.  57

The dataset includes every outcome from a merits decision in patent 
cases filed in U.S. district court in 2008 and 2009.  The unit of analysis in 58

the data is the patent-case combination. Patents are often litigated more than 
once, and if so they would show up appear multiple times in the data.  Simi59 -

 Allison et al., Understanding the Realities, supra note __. For a fuller discussion of some 57

of the complexities of coding patent litigation data, see Jason Rantanen, Empirical 

Analyses of Judicial Opinions: Methodology, Metrics, and the Federal Circuit, 49 CONN. L. 
REV. 227 (2016).

  The cases under study commenced over a decade ago. Given the long pendency of 58

litigation, some cases did not reach a definitive conclusion until as late as 2015, but it 
is nevertheless reasonable to suspect that at some of the specific patterns detected in 
this period would not hold true today. Patent law has experienced significant doctrinal 
and statutory upheaval in the past ten years. I discuss the generalizability of the core 
result in Part V, infra.

 A patent (or individual patent claim) that is found invalid by a court is permanently 59

lost by the patentee. A patent that has been subject to an affirmative finding of “no 
invalidity” or, more commonly, simply not ruled invalid remains at risk in future liti-
gation. See Mark A. Lemley, The Fractioning of Patent Law, in INTELLECTUAL PROPERTY 
AND THE COMMON LAW 504 (Shyamkrishna Balganesh ed., 2013) (noting the asym-
metry in which a patentee has to win every time a patent is challenged).
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larly, if a case includes judgments on multiple discrete patents, the disposi-
tion of each patent is coded individually. 

The key outcome variable is the result of an adjudication of invalidity 
(“valid” or “invalid”).  This includes all doctrinal bases (eligible subject mat60 -
ter, novelty, obviousness, and so on), and decisions that occur at any stage in 
the litigation. If a district court judgment was subsequently overturned on 
appeal, then the invalidity outcome reflects that. Importantly, the outcome 
includes judgments of partial (in)validity. In other words, if only a subset of 
the claims was at issue, but all of those were found invalid, the outcome is 
coded as a finding of “invalidity” on the patent. 

In one important respect, I treat the data differently to the previous au-
thors. Fifteen cases (out of 216 unique cases in total) involved a split decision 
on a particular patent, in which some claims were found invalid while others 
were upheld. Although this is not a modeling problem in principle, it does 
make it difficult to compare the text of these patents to the other examples, 
all of which are coded at the case-patent level (even if only a subset of claims 
was at issue). To ensure all the outcomes are comparable, I drop these obser-
vations from the analysis. 

B. Text preparation 

I supplement the litigation data with the full claim text of each patent, 
which I obtain from the USPTO.  Because the outcomes are coded at the 61

level of the patent rather than the individual claims, I concatenate the text of 

  Strictly speaking, courts find that a patent is not invalid. 60

  USPTO Patents View, Data Download (Dec. 31, 2019), https://www.patentsview.org/61

download. The post-processed claim text will be available in an online appendix.
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Table 1: Summary of outcomes (validity decisions in case-patent pairs)

Ruled not invalid Ruled invalid Total

Observations 205 159 367

https://www.patentsview.org/download
https://www.patentsview.org/download
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all claims into a single “document” for each patent.  Then, to make the text 62

amenable to quantitative analysis, I put it through a series of typical “prepro-
cessing” steps.  63

First, I break down the patent into its constituent words, convert the 
words to lowercase, and remove all punctuation, numbers, and other sym-
bols. Note that in the process, I discard all information about word order and 
syntactical structure. This representation of a text—known as a “bag of 
words”—may appear quite aggressive, but prior research in social science has 
shown that these bags of words convey the essential meaning of a document 
with remarkable power.  (New tools in NLP offer increasingly elaborate 64

ways to represent the text, some of which explicitly maintain information 
about word co-occurrence and semantic relationships.  However, the tradi65 -
tional bag of words approach has the advantage of being very transparent, 
and performs well here.) 

  In other words, I use the combined text of every claim in a given patent to predict a 62

decision on that patent, even when a court is asked to consider only a subset of the 
claims. This obviously risks introducing a certain amount of noise—in the sense of 
irrelevant data—into the model. On the other hand, this is a conservative choice: if the 
words in non-adjudicated claims are not relevant to the validity decision, they should 
not contribute useful information to the prediction model.

  The method I describe is a common approach to handling text of this kind. See, e.g., 
63

Eric Talley and Drew O’Kane, The Measure of a MAC: A Machine-Learning Protocol for 

Analyzing Force Majeure Clauses in M&A Agreements, 168 J. INSTITUTIONAL & THEO-

RETICAL ECON. 181 (2012); Gabriel Rauterberg and Eric Talley, Contracting Out Of The 

Fiduciary Duty Of Loyalty: An Empirical Analysis Of Corporate Opportunity Waivers, 117 
COLUM. L. REV. 1075 (2017).

  Justin Grimmer and Brandon M. Stewart, Text as Data: The Promise and Pitfalls of Au
64

-

tomatic Content Analysis for Political Texts, 21 POL. ANALYSIS 1, 6–7 (2013).

  In particular, modern NLP applications often use word or document “embeddings,” 65

which represent text as low-dimensional numerical vectors that incorporate 
information about the co-occurence rates of words within the corpus. See, e.g., Elliott 
Ash, Daniel L. Chen, and Arianna Ornaghi, Gender Attitudes in the Judiciary: Evidence 

from U.S. Circuit Courts, (working paper, 2020), http://elliottash.com/wp-content/
uploads/2019/11/200205_Ash-Chen-Ornaghi.pdf.
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Next, as is common (although not universal), I remove “stopwords” 
from the corpus.  These are phrases such as “the," “or," and “to,” that are 66

very common, but do not usually convey any semantic meaning. It is worth 
noting that the patent context is somewhat unusual: many traditional stop-
words are themselves terms of art that have been subject to significant litiga-
tion about their interpretation.  The contested nature of these words may 67

add complexity to more elaborate semantic models of patent text, but for our 
purposes, the choice about whether to include them is essentially an empiri-
cal question—which is more predictive? I found that predictive accuracy was 
degraded with stopwords included, so I remove them in the analyses that I 
present here. 

Finally, to avoid overfitting to idiosyncratic words, I filter the dataset to 
exclude any term that appears in fewer than ten unique patents, and then 
select the 300 words that appear most commonly across the entire corpus 
(that is, the set of all words that appear at least once in any document). Using 
this filtered set of words, I count the number of times each term appears in 
each patent. The output of this process is set of vectors, one per patent, 
which contain a count of the number of times that each of the 300 terms ap-
pears in that patent. Finally, to ensure that the results are not driven primar-
ily by the length of a patent, I normalize each word by dividing its frequency 
by the sum of all word counts in that patent.  68

Taken together, all these steps result in a grid of normalized term fre-
quencies, with a row for each patent, and a column for every word in the 
corpus. This representation of the text is known as a document-term matrix 
(or “DTM”). Table 2 shows the first few rows and columns of the trans-

  I use the Snowball stopword list. See Stopwords 2.0, https://stopwords.quanteda.io. 66

The full list is 175 words long, and includes pronouns, prepositions, and conjunctive 
words, as well as common contractions (“shan’t," “won’t," and so on). Additionally, I 
remove the word “claim," which appears very frequently in every patent but primarily 
provides signposting information (for example: “the device of claim 1, wherein…”).

  See, e.g., Dan L. Burk and Mark A. Lemley, Fence Posts or Sign Posts? Rethinking Patent 
67

Claim Construction, 157 U. PA. L. REV. 1743, 1751–1753 (2009).

  Of course, we can also control for the length of the patent in the analysis. This step 68

simply ensures that the effect of the words themselves and the overall length are con-
sidered separately.
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formed DTM for this patent corpus.  To create the final analysis dataset, I 69

merge the DTM with the litigation outcomes and metadata based on the in-
volved patent in each adjudication.  70

C. Methodology 

To accommodate the textual data, I adopt a somewhat different empiri-
cal strategy to prior work in this area. The typical approach is to use a logis-
tic regression, which is a generalization of linear regression designed for bi-
nary (rather than continuous) outcomes. A traditional linear model is prob-
lematic here for two reasons. First, textual data is inherently very “high-di-
mensional”—in most cases I have nearly as many variables as observations, 
which renders linear and logistic regression unreliable at best, and impossi-
ble at worst. Second, all these variables (text and otherwise) interact with 
each other in highly complex, non-linear ways, which are not generally easy 

  The grid is largely populated with zeroes; in statistical language, it is extremely sparse. 69

For this reason, researchers often take steps to further reduce the dimensionality of 
the data, such as computing the singular value decomposition of the matrix. See, e.g., 

Talley and O’Kane, supra note __. For purposes of this project, I am interested in pre-
serving information about the distinct words, so I leave the DTM as is. 

  Note that each row of the DTM will appear as many times as its patent was litigated.70
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Table 2: Transformed document-term matrix

absorbent acceptable access accordance according acid …

patent1 0 0 0 0 0 0 …

patent2 0 0 0 0 0 0 …

patent3 0 0 0 0 0 0 …

patent4 0 0.031 0 0 0.062 0 …

patent5 0 0 0 0 0 0 …

patent6 0 0 0 0 0.048 0 …

⋮⋮ ⋮ ⋮ ⋮⋮ ⋮
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to anticipate or specify ex ante. Machine learning offers promising solutions 
to both these problems. 

To model the data, I use a statistical tool known as a “random forest.”  71

Random forests are a generalization of the basic decision tree introduced 
above.  Decision trees are highly interpretable and flexible, but they tend to 72

overfit and are quite sensitive to small perturbations in the data, such that 
the output can be quite variable from tree to tree. To circumvent this, a ran-
dom forest grows thousands of trees in parallel, using randomly chosen sub-
sets of data and covariates each time. The algorithm then combines their 
predictions by aggregating the “votes” of each individual tree, resulting in a 
stronger prediction from the whole ensemble together. 

For each model, I follow a common procedure to train the algorithm 
and produce predictions.  First, I split the observations at random into a 73

“training set” (90% of the data) and a “test set” (10%). Then, I estimate a sta-
tistical model that best fits the training data.  In each case, the outcome of 74

interest is whether or not a patent is held invalid. Then, using this trained 
model, I predict the outcomes in the previously unused test set.  I repeat 75

this procedure nine more times, each time using a distinct set of test data, 
such that I end up with an “out of sample" prediction of invalidity or validity 

  See Leo Breiman, Random Forests 45 MACHINE LEARNING 5 (2001). For the canonical 71

textbook treatment, see TREVOR HASTIE, ROBERT TIBSHIRANI & JEROME FRIEDMAN, 
THE ELEMENTS OF STATISTICAL LEARNING 587–601 (2d ed., 2009). In the Appendix, I 
report results for several alternative algorithms.

  See footnote __ and accompanying text.72

  See, e.g., Pozen et al., supra note __ at 31.73

  Note that, in principle, this could be any statistical model—from a simple linear re74 -
gression to a complex neural network.

  Traditional measures of statistical performance assess how well a model performs 75

“within sample.” Perhaps the most well-known example is R-squared, which is used in 
classical linear regression to measure the proportion of variation in the data that is 
explained by a given model. (There are analogous metrics for logistic and other gener-
alized models.) However, optimizing for in-sample performance risks overfitting the 
data—that is, producing a model that works well in one context or in a particular sam-
ple, but is not readily generalizable. Applying an algorithm to unseen data provides a 
more challenging and realistic assessment of its predictive accuracy. See generally 

GARETH JAMES, DANIELA WITTEN, TREVOR HASTIE & ROBERT TIBSHIRANI, AN IN-

TRODUCTION TO STATISTICAL LEARNING 29–37 (2013).

DRAFT — PLEASE DON’T CITE



Informative Patents 21

for every observation in the data.  We can then compare these predictions 76

to the hand-coded “true” outcomes in order to assess how well our algorithm 
performs at predicting court decisions that it has not previously encoun-
tered. 

To evaluate the models, I use two common measures of performance. 
The first is “accuracy”—or equivalently, correct classification rate (CCR)—
which is simply the number of “successes” divided by the total number of 
predicted outcomes. In other words, if a model correctly classified 75 out of 
100 outcomes and got the other 25 wrong, its CCR would be 75%. The CCR 
is useful and intuitive, but comes with an important caveat. In practice, the 
model produces a probabilistic, rather than definitive, prediction of whether 
a patent will be held invalid. The CCR implicitly assumes that 50% is the 
correct cutoff—that is, any probability above 50% indicates (in our case) in-
validity, and anything below 50% indicates validity. In some cases, and espe-
cially when the data are evenly balanced between the two classes, this can be 
a reasonable assumption. However, there are sometimes reasons to prefer a 
different cutoff, and so it is common to report a more flexible score known 
as the “area under the curve” (AUC).  77

D. Results 

I begin with a high-level test: how predictive are the words of the 
claims on their own? It is important to have a baseline against which to 
compare the performance of our classification algorithm. An obvious possi-
bility is simply to predict outcomes at random—that is, to assign a 50% 
chance of invalidity to every case. (Intuitively, a predictive model that cor-
rectly classifies fewer than 50% of outcomes is worse than guessing.) Alter-
natively, a more conservative choice is to assign the most common outcome to 

  This procedure is known as k-fold cross-validation, where “k” is equal to the number 76

of splits of the data. Because I have relatively few observations, I use ten folds to en-
sure a reasonable number of cases in each training set.

  Rather than assuming a 50% threshold, AUC varies the cutoff from 0% to 100%, and 77

computes the true positives (correct prediction of invalidity) and false positives (in-
correct prediction of invalidity) at each point. We plot each of these pairs of values on 
a graph, and calculate the area under the resulting curve. An AUC of 0.5 indicates a 
completely uninformative classifier (that is, true and false positives are nearly equal at 
every possible cutoff), while an AUC of 1 reflects a model that perfectly discriminates. 
An example of these curves is given in the Appendix.
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every case. In the dataset at hand, around 56% of patents were actually held 
not invalid, so a naive classifier that simply predicted that every single case 
would end in a finding of validity would be correct 56% of the time. Clearly, 
neither of these strategies produce insightful predictions—like a stopped 
clock, they are both right some of the time—but they provide a floor for the 
quality of any model. 

Second, it is important to compare the performance of the new ap-
proach to a more traditional, theory-driven model. As I discuss above, em-
pirical scholars of patent litigation have tested a huge range of potential cor-
relates of validity, and there is no universally agreed-upon set of controls. I 
construct an arbitrary “canonical” logistic regression model, which includes 
controls for a range of attributes that are generally thought be related to va-
lidity outcomes or which have proven informative in earlier studies. I in-
clude metadata related to the patent, litigation, technology class, jurisdiction, 
and type of assertion entity.  78

The main results, presented in Table 3, are striking. The random forest 
model correctly predicts 72.5% of validity decisions, using only the text of the 
patent claims. Meanwhile, the theory-driven model achieves an accuracy of 
just 64% on the same data. In other words, the text-only model achieves an 

  The full logistic specification uses the following covariates: 78

  (1) Patent metadata: foreign origin; adjusted number of citations; total prior art 
references; and age at filing of the litigation. 

  (2) Litigation metadata: number of patents asserted in the suit and the number of 
defendants. 

  (3) Dummies for five primary technology areas (one excluded), and an indicator 
for patents that are implicated in abbreviated new drug applications. I adopt the tech-
nology areas used in the original data: mechanical, electronics, optics, biotechnology, 
chemical, and software. 

  (4) Mutually exclusive dummies for individual, failed startup, university, and 
patent-assertion entity (operating company is the excluded category). 

  (5) Dummies for three of the most important jurisdictions—the Eastern District of 
Texas, the Northern District of California, and the District of Delaware (all others 
excluded for statistical power).
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eight percentage-point improvement on the more complex theoretical mod-
el.  79

Table 4 shows the breakdown of correct and incorrect predictions for 
the text model. It correctly identified 142 of the true decisions in favor of the 
patentee (69%), but incorrectly predicted the remaining 63. The model per-
forms slightly better for findings of invalidity, correctly predicting 122 out of 
159 decisions (77%).  80

Another way to break down the predictive accuracy is to look at its suc-
cess (and failure) across different groups of the data. Recall that—unlike the 
theory-driven model—the algorithm was given no explicit information 
about a patent, its owner, or the litigation. To the extent that there are in-
formative differences contained in the text of for example, electrical and 
software patents, the model deduced those patterns itself. Figure 1 shows a 
breakdown of the model’s success rate across (a) different primary technolo-
gy areas and (b) the type of entity asserting the patent. The graphs compare 
the accuracy of the text and theory-driven models, as well as a baseline that 

  Note also that the text-only model performs well despite being “handicapped.” Several 79

patents appear multiple times in the analysis, but the model can only produce one pre-
diction for the text of a given patent. For example, if a patent is upheld twice before 
ultimately being found invalid in a third case, the model will be wrong at least once (if 
it predicts validity) or twice (if it predicts invalidity). In the results reported in Table 5, 
infra, I relax this constraint by including additional case-level variables.

  In settings where one of the outcomes has more observations, random forests are 80

known to favor that class in its predictions. See HASTIE ET AL., supra note __, at 317. 
To address this, I slightly upweight the “invalid” decisions at the training stage, such 
that the model sees more of them in each iteration. The overall accuracy varies slightly 
as this parameter is changed and the model favors validity decisions more or less, but 
this does not substantively affect the conclusions (the AUC remains steady and high).
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Table 3: Overall performance

Guess the most 

common outcome

“Canonical” logistic 

regression

Text-only random 

forest

Correctly classified 56.3% 64.4% 72.5%

AUC - 0.69 0.81
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simply guesses the most common outcome for each primary technology area 
or asserting entity, respectively. 

In general, the text model predicts well across the whole range of indus-
tries. It is notably more accurate than the traditional approach for software, 
chemistry, and mechanical patents. Meanwhile in two sectors—biotechnolo-
gy and optics patents—the text approach performed worse or equal to the 
baseline. Both those technology areas, however, had relatively few chal-
lenged patents (13 and 14, respectively). If there is something unique about 
the claim text within each area, the algorithm likely did not have enough 
data to learn it for these two. 

Between different types of patent owner, the text-only model had more 
mixed success. It is a clear improvement on past models (and on guessing) 
for operating companies, who make up by far the majority of patentees in 
this set of litigation. The accuracy amongst patents asserted by PAEs (80%) is 
a particularly striking improvement on the theoretical model. On the other 
hand, it predicted less accurately than the theory-driven model for individu-
als (50 observations). This is an interesting exception to the generally strong 
performance of the text model, and what drives it is unclear. It may be that 
individuals assert more idiosyncratic patents, such that any patterns are hard 
to discern. 

Finally, I ask: how much information is contained in text alone? To test 
this, I reestimate the random forest on the same data, but this time include 
both the words and metadata together. Table 5 reports the accuracy and 
AUC for the “combined" model (the first column repeats the text-only re-
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Table 4: True outcomes versus predictions (text-only model)

Actual decision

Valid Invalid

Model prediction

Valid 142 37

Invalid 63 122

205 159
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Figure 1: Accuracy of validity/invalidity predictions (higher is better)

Failed Startup (9)

Individual (50)
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Patent Assertion Entity (29)
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NOTE: Number of observations in parentheses. The “baseline" predicts the most common out-
come within each technology area or entity. The most common outcome for biotechnology 
and mechanical patents was a finding of invalidity; for chemistry, electrical, optics, and soft-
ware, it was the opposite. Amongst asserting entities, the most common outcome for individu-
als was a finding of invalidity; for all others it was validity.
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sults from Table 3 for comparison purposes). The inclusion of the litigation 
and patent metadata brings a very small performance improvement, taking 
the overall accuracy to 73.4%. (Table 6 translates this into concrete out-
comes: the combined model correctly predicts two additional validity find-
ings, and one additional invalidity finding.) It seems that a substantial 
amount of information about the patent is encoded in the text of the claims. 
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Table 5: Comparison of Random Forest model performance

Text-only random forest Combined random forest

Correctly classified 72.5% 73.4%

AUC 0.81 0.83

Table 6: True outcomes versus predictions (combined model)

Truth

Valid Invalid

Model prediction

Valid 144 36

Invalid 61 123

205 159
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E. Interpretability 

While random forests are superior to the traditional approach in terms 
of predictive power, they are significantly less interpretable. This is the in-
famous “black box” character of many machine learning models, and is often 
an unfortunate tradeoff in this area.  Unlike traditional regression analysis, 81

the random forest model does not produce specific estimates for the effect of 
any single variable. (Indeed, the variables might relate to the outcome in 
highly non-linear ways; this flexibility is one of the model’s strengths.) How-
ever, there are ways to explore what factors might be particularly important 
to the overall accuracy of the model. 

The random forest produces “variable importance” scores, which indi-
cate how far the accuracy of the model falls when a given variable is re-
moved.  (For example, a variable importance of 0.01 would be equivalent to 82

a 1 percentage-point decline in accuracy.) Two notes of caution are in order. 
First, in situations where variables are highly correlated, the variable impor-
tance scores can be artificially low. For example, if two words provide very 
similar (but important) information about the outcome, such as “pharmaceu-
tical” and “pharmaceutically," then overall accuracy may not decrease when 
only one of them is removed. Second, the precise variable importances can 

  As Arti Rai has described, the “black box" nature of an algorithm can be a result of 81

various different factors. Arti Rai, Machine Learning at the Patent Office: Lessons for 

Patents and Administrative Law, 104 IOWA L. REV. 2617 (2019). In this case of this pa-
per, it derives from complexity. The inputs, outputs, and algorithmic steps are all 
quite clear, but it is difficult for humans to comprehend the workings of 2,000 trees 
simultaneously. But see Cynthia Rudin, Stop Explaining Black Box Machine Learning 

Models for High Stakes Decisions and Use Interpretable Models Instead, 1 NATURE MACHINE 
INTELLIGENCE 206 (2019) (arguing that in areas where explanation is a particularly 
salient social value—for example, prediction of recidivism—we should always prefer 
interpretable models).

  In practice, the algorithm randomly rearranges (permutes) the values of variable in 82

question, so that any real relationship between that variable and the outcome is de-
stroyed. It then re-estimates the model, and notes how much predictive accuracy falls 
as a consequence.
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vary slightly as (apparently innocuous) model parameters are changed.  For 83

both these reasons, we should interpret these scores lightly: a guide to what 
the model is thinking, rather than precise estimate of any particular word 
effect. 

With those cautions in mind, figure 2 shows the fifteen most predictive 
words for the text-only model, estimated on the entire dataset. A few points 
stand out. “Amount” and “pharmaceutically” are both amongst the most pre-
dictive words. On closer inspection, they correlate very strongly with ANDA 
and the chemical technology area, indicating that they are serving as a proxy 
for drug patents. Ditto “circuit” and electrical patents. It is striking that the 
model picks up these relationships so clearly, and their predictive impor-
tance reinforces the salience of technology areas that has been highlighted in 
prior work.  The word “wherein” is also reliably predictive, suggesting that 84

the relative presence of dependent claims helps to discriminate between a 
valid and invalid patent. In general, though, there are relatively few terms of 
art. Finally, all of these effects are strikingly small—no single word domi-
nates. This indicates, unsurprisingly, that the words are related to the out-
come and to each other in complex ways. 

One further note of caution is warranted: nothing about these findings 
implies that claim text has a causal effect on outcomes. The words proxy for 
some underlying measure of quality, but they don’t cause invalidity decisions 
in and of themselves. Consider a word that is used almost entirely in the 
context of pharmaceutical patents. We know from past research that those 
patents are held invalid at lower rates than other types of utility patent. A 
good algorithm would therefore be likely to find, inter alia, that words that 
were strongly associated with drug patents were contributors to predictive 
accuracy (as indeed this model does). But it would make no sense to try to 
deploy this language outside of the pharmaceutical context. The model finds 
patterns in the world, not causal relationships. 

  One example of such a parameter is the rate at which we sample from “invalid” and 83

“valid” decisions when building the model. The potential for a multiplicity of models 
and algorithms to perform at similar levels of accuracy is a broader problem in ma-
chine learning, which Breiman refers to as the “Rashomon effect.” Breiman, supra note 
__. 

  Allison et al., Divided Patent System, supra note __.84
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VI. DISCUSSION 

My central findings are twofold. First, that patent litigation is consider-
ably more predictable than previous research has realized. And second, that 
the words on the face of the patent contain significant information about the 
patent’s propensity to be found invalid in court. Even with a relatively small 
dataset—just 367 adjudications of invalidity—the algorithm is able to correct-
ly predict a substantial fraction of outcomes using no more than the text of 
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the claims. These findings have important but distinct implications for re-
search and the practice of patent litigation. 

A. Litigation and patent quality 

On the academic side, there are multiple avenues for future research. 
While the text of claims appears to encode much of the information that is 
also contained in the traditional correlates of litigation outcomes, it appears 
that the claims contain additional information about the likelihood of a va-
lidity decision—above and beyond the usual metadata. Although the goals of 
prediction and explanation are in some tension here, there are potential 
ways to incorporate textual measures of quality into more traditional, inter-
pretable models of litigation, particularly given sufficient data.  85

What can we learn about patent quality more generally? The possibility 
of directly extrapolating this result to a broader set of non-litigated patents is 
hampered by serious selection concerns. It is widely understood the patents 
that are subject to a decision in litigation are not representative of all patents, 
and it would be a mistake to assume a textual model of the quality of a dis-
puted patent could be applied directly to the broader population.  However, 86

the methods presented here can be applied to help better understand the 
patents at different stages in their lifecycle. An obvious possibility is to use 
analysis of the text of litigated and non-litigated patents to improve models 
of selection into litigation. This is an area of significant interest to academics 
and industry alike. As Colleen Chien has argued, our limited understanding 
of propensity for litigation renders patent litigation mostly uninsurable, and 
drives companies to amass large patent portfolios as defensive arsenals to 

  For example, with more litigated patents to draw on, it might be possible to compute a 85

low-dimensional characterization of the description and claim text that could be in-
corporated into linear regression, as a text-based control for patent quality. See, e.g., 

Badawi, supra note __.

  See, e.g., Michael D. Frakes and Melissa F. Wasserman, Do Patent Law Suits Target In
86

-

valid Patents?, in SELECTION AND DECISION IN JUDICIAL PROCESS AROUND THE WORLD: 
EMPIRICAL INQUIRIES 6 (Yun-chien Chang ed., 2019); Allison, supra note __ at 56–7.
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ward off the threat of it.  But despite various academic efforts,  there re87 88 -
mains a great deal of ambiguity about exactly which characteristics of a 
patent reliably predict entry into litigation.  The results in this Article sug89 -
gest that the text of patents can provide important insight on this question.  90

B. Caveats and limitations 

Beyond the general concern about the limits of explainability discussed 
in Part IV, infra, there are some specific limitations to the findings here. A 
major caveat of the study is its relatively short time window. The data I use 
here are extremely high quality, and permit us to compare the performance 
of computational text analysis to existing studies, but they only account for 
cases filed in 2008 and 2009.  In the past ten years, patent law has been in 91

significant flux—the changes have been both doctrinal  and statutory —and 92 93

  See Colleen Chien, Predicting Patent Litigation, 90 TEX. L. REV. 283 (2011) (finding that 87

after-acquired characteristics are somewhat predictive of selection into litigation).

  Id. See also John Allison, Mark A. Lemley, Kimberly A. Moore, and Derek Trunkey, 88

Valuable Patents, 92 GEO. L.J. 435 (2004) (litigated patents are younger, contain more 
claims, and are more highly cited than a non-litigated matched group); Jean O. Lan-
jouw and Mark Schankerman, Characteristics of Patent Litigation: A Window on Competi-

tion, 32 RAND J. Econ. 129 (2001) (finding that litigated patents are, inter alia, more 
highly cited and have more claims).

  See Lee Petherbridge, On Predicting Patent Litigation, 90 TEX. L. REV. SEE ALSO 75, 79 89

(2011) (noting the need for a more “specific and sensitive test” given that litigation is a 
rare event relative to the population of issued patents).

  I intend to explore this question in future work.90

  The average duration of patent litigation filed in this period was just over three years, 91

such that most cases were resolved by the end of 2012, although certain cases which 
were appealed were pending for considerably longer.

  See, e.g., Mayo Collaborative Servs. v. Prometheus Labs., Inc., 566 U.S. 66 (2012) (mere 92

applications of laws of nature are not eligible subject matter in the absence of some 
additional inventive step); Ass’n for Molecular Pathology v. Myriad Genetics, Inc., 569 
U.S. 576 (2013) (isolated DNA sequences that occur naturally are not eligible subject 
matter); Alice Corp. v. CLS Bank Int’l, 573 U.S. 208 (2014) (abstract ideas are not ren-
dered patentable merely through a generic computational implementation); Nautilus, 
Inc. v. Biosig Instruments, Inc., 572 U.S. 898 (2014) (patent claims must inform those 
skilled in the art of the scope of the invention, with reasonable certainty).

  Leahy-Smith America Invents Act, Pub. L. No. 112-29, 125 Stat. 284 (2011). See also 
93

Mark A. Lemley, The Surprising Resilience of the Patent System, 95 TEX. L. REV. 1, 1–6 
(2016) (describing some of the major changes to and in the patent system in the last 
three decades).
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it would be a mistake to extrapolate this particular model to a case filed today 
and expect it to predict well. Although I intend in future work to extend my 
analysis to recent litigation, my contribution in this Article is primarily con-
ceptual. At that level, there appears to be little reason to expect that claim 
text would have become less informative as a result of the intervening legal 
changes even if, as seems likely, the precise structure of the patterns has 
changed.  94

At the same time, patent litigation itself may have changed. There has 
been a significant increase in the volume of litigation brought by NPEs.  In 95

the study window, relatively few cases fall into this category. But the follow-
ing years played host to a stark change: Cotropia et al. report that nearly 50% 
of patent litigation was brought by NPEs of some kind in 2012, up nearly 30 
percentage points since 2010.  This change, primarily driven by patent 96

holding companies, is consequential to the extent that we think patents liti-
gated by these new PAEs are different in kind to other patents. For example, 
it may alter the selection mechanism if PAEs are more prone to advance 
low-probability cases to merits decisions. Again though, there’s no a priori 

reason to assume that the text model would perform poorly in this context—
indeed, it was remarkably successful at discriminating between the valid and 
invalid patents asserted by PAEs in 2008 and 2009. 

C. Legal analytics: the coming change 

Although there are valuable insights in this work for scholars, perhaps 
the most fertile ground for the predictive analytics technology demonstrated 
here is in the profession. A central component of litigation practice lies in 
answering what are, essentially, questions of prediction. How likely are we 
to succeed on this eligibility question? How strong is this patent? What are 

  In one important regard, this claim might be controversial. The recent line of 94

Supreme Court cases addressing patentable subject matter (described in note __, supra) 
has been widely criticized for creating an insolubly ambiguous standard for patent 
eligibility. But recent survey evidence indicates that patent prosecutors (though not 
litigators!) are still able to predict outcomes with some degree of confidence. See Jason 
D. Reinecke, Is the Supreme Court’s Patentable Subject Matter Test Overly Ambiguous? An 

Empirical Test, 2019 UTAH L. REV. 581. This is an obvious area for future research.

 Cotropia et al., supra note __.95

  Id. at 674.96
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the chances of a successful invalidity counterclaim? The results in this paper 
suggest that validity decisions can be forecast with greater confidence than 
previously realized. To be sure, uncertainty remains; even for this model, 
many predictions fall into a “grey area.”  But the higher probability predic97 -
tions allow patentees to make more informed, confident choices about their 
litigation strategy, and ultimately to reduce unnecessary litigation costs.  98

From the perspective of alleged infringers, better ex ante prediction tools can 
also serve as a prophylactic against strategies which assert many patents in a 
single suit—some of which may be of questionable validity—in order to 
overwhelm defendants.  Accurate prediction is also highly salient given the 99

growth of contingent fee representation in patent litigation.  100

These changes sit in the context of broader developments in law and 
legal analytics.  A burgeoning literature on the use of predictive analytics in 101

legal practice evinces both enthusiasm from proponents of “legal tech,”  102

and reservations from those concerned about its impact on the profession 
and the fair administration of justice.  On the other hand, David Engstrom 103

and Jonah Gelbach argue that in most areas of law, NLP will remain too su-

  The graphs in Appendix Part B give a visual sense of how well the various models 97

succeed in separating true valid and true invalid decisions. In cases where the text 
model gives a predicted probability of validity above 70% (or below 30%), there are 
very few false positives.

  See supra note __.98

  See Schwartz, supra note __ at 375-6.99

  Id.
100

  Engstrom and Gelbach catalog some of the many companies now operating in the 101

“legal tech” space. Most provide sophisticated data aggregation and presentation (e.g., 
Lex Machina; Gavelytics), but a number focus explicitly on questions of prediction, 
including Blue J Legal (tax) and Colossus (insurance). See David Freeman Engstrom 
and Jonah B. Gelbach, Legal Tech, Civil Procedure, and the Future of Adversarialism, 169 
U. PA. L. REV. ___ (2020).

  See, e.g., Daniel Martin Katz, Quantitative Legal Prediction—Or—How I Learned to Stop 
102

Worrying and Start Preparing for the Data-Driven Future of the Legal Services Industry, 62 
EMORY L.J. 910 (2013); Benjamin Alarie, The Path of Law: Towards Legal Singularity, 66 
U. TORONTO L.J. 443 (2016); John O. McGinnis and Russell G. Pearce, The Great Dis-

ruption: How Machine Intelligence Will Transform the Role of Lawyers in the Delivery of 

Legal Services, 82 FORDHAM L. REV. 3041 (2014).

 See, e.g., Frank Pasquale and Glyn Cashwell, Prediction, Persuasion, and the Jurisprudence 
103

of Behaviourism, 68 U. TORONTO L.J. 63 (2018); Citron and Pasquale, supra note __.
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perficial to account for the range of nuance that is implicit in legal reasoning, 
which incorporates both “synoptic” and “subtle” judgments.  Put different104 -
ly, legal decisions simultaneously implicate regular, observable patterns, as 
well as subtle shades of grey, and current NLP technology excels primarily at 
the former. The evidence in this paper broadly supports this supposition. In 
the context of a small sample and with little instruction, NLP proved re-
markably good at identifying consistent patterns in the data. But while the 
models in this paper are a significant improvement on the state of the art, 
there remains a clear grey area: even with both text and metadata combined, 
the model still misclassified 25% of decisions. More training data will no 
doubt improve the accuracy of machine predictions,  but forecasting in this 105

area will likely remain a human-guided process—albeit with machine as-
sistance.  106

Finally, a more troubling implication of natural language approaches to 
patent litigation lies in the future of patent prosecution. To the extent that 
future applicants are able to identify specific linguistic techniques which tend 
to find favor with courts—but which have little to do with the disclosure of 
information about the underlying innovation—we might be concerned about 
further divorcing extant patent law from its underlying social purpose. At 
this stage, such a concern is probably premature. Patent doctrine is a dynam-
ic area of law, responding to constant changes in technology and social 
norms, such that particular patterns in patent language seem unlikely to be 
stable for long. However, to the extent that computational approaches are 
able to identify durable patterns in decision-making, it is probably more ap-
propriate to view this as evolution rather than revolution. Like all legal pro-

  Engstrom and Gelbach, supra note __ (distinguishing between the “synoptic” and “sub104 -
tle” aspects of legal judgment, and arguing that machine learning is well suited to the 
former, but not to the latter).

 Because patent law is a fairly dynamic area, the more successful applied uses of the 105

model developed here would need to be regularly updated with contemporaneous 
decisions. Fortunately, this is an area in which comprehensive data collection is feasi-
ble. Patent litigation is relatively low volume, and case data are comprehensively col-
lected by popular third-party analytics services such as Lex Machina.

  In this regard I concur with Eric Talley, who argues that law is “irreducibly complex,” 106

and will continue to need “significant human input.” See Eric Talley, Is the Future of 

Law a Driverless Car? Assessing How the Data-Analytics Revolution Will Transform Legal 

Practice, 174 J. INST. & THEORETICAL ECON. 183, 185 (2018).
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fessionals, patent prosecutors are, to some degree, pattern recognition ex-
perts. Claims drafting has already evolved into a highly specialized art, as 
patent attorneys respond to (and try to anticipate) Federal Circuit decisions 
on a range of esoteric but consequential questions of linguistic interpreta-
tion. Machine learning tools may accelerate this process, but they are ulti-
mately different in capacity, rather than different in kind. 
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APPENDIX 

A. Receiver operating characteristic (ROC) curves 

Logistic regression and random forests, like many other classification 
models, generate a probability for every outcome, and then use this probabil-
ity to assign a predicted class (in this case, “valid” or “invalid”). By default, 
most classifiers use 50% as the assignment cutoff, but depending on the bal-
ance of the underlying data—or cost of false positives/negative—it is often 
desirable to set a different threshold. An ROC curve shows the effect of 
varying this cutoff. 

The ROC varies the threshold from 0 to 100, and at each level calculates 
the rate of “true positives” (in our case, correct prediction of invalidity) and 
“false positives” (incorrect predictions of invalidity). The dotted diagonal line 
is the baseline: every point on this line is equivalent to guessing the outcome 
with 50% probability. Curves that are closer to the top left corner indicate an 
algorithm that is more successful at discriminating between outcomes. (The 
AUC measure, described in Part IV.C., refers to the area under this curve.) 
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B. Separation graphs 

The graph below shows the density of predictions for each model, split 
into valid and invalid patents. The blue curve shows the “true” invalid 
patents, while the red curve plots the “true” valid patents. The bottom axis 
shows the model’s predicted probability of validity. The traditional model is 
notably worse at separating the valid and invalid decisions—a substantial 
fraction of the true invalid patents have a validity prediction greater than 
50%.
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