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Abstract

Cybercrime is an increasingly common risk for organizations that collect and maintain

vast troves of data. There is extensive literature that explores the causes of cybercrime, but

relatively little work that aims to predict future incidents. In 2011, the United States Securi-

ties and Exchange Commission (SEC) provided guidelines for how publicly traded companies

should convey these risks to potential investors. The SEC and other regulatory agencies are

exploring how to leverage artificial intelligence, machine learning, and data science tools to

improve their regulatory efforts. This paper explores the potential to use machine learning

and natural language processing techniques to analyze firms’ mandatory risk disclosure state-

ments, and predict which firms are at the greatest risk of suffering cybersecurity incidents.

More broadly, this study highlights the potential for using legally mandated disclosures to

bolster regulatory efforts, particularly in the context of prediction policy problems.

1 Introduction

"Sunlight is said to be the best of disinfectants, electric light the most efficient policeman.", Louis

Brandeis in Other People’s Money and How the Bankers Use It (1914)

In 1914, Louis Brandeis wrote this powerful statement in response to the emergence of consol-

idated banks and trusts (Brandeis, 1914). He was concerned about the power these institutions

would have in American democracy, and prescribed several solutions. Among these was the notion

of "sunlight as disinfectant" - that transparency and openness were effective means to regulate

these large enterprises that could perpetuate a range of social ills. At the time, Brandeis called for

the creation of a government agency that could force transparency and investigate wrongdoings.

These ideas were the foundation that formed what became the Federal Trade Commission.

Today, large corporations deal not only with other people’s money, but also their data. Over

the last several decades, the U.S. adopted several data protection laws that regulate particular

economic sectors that deal with especially sensitive data. Mandatory disclosures are a popular tool
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for encouraging good corporate behavior. "Sunlight as disinfectant" is the main theory underlying

mandatory disclosure laws, and the notion is that consumers and regulators can punish corporations

that engage in bad behavior. So long as there is adequate information, the public and government

agencies are well positioned to prevent the types of social ills that stem from consolidated corporate

power.

Cybersecurity incidents that result in the loss of consumer data, especially losses attributable

to external breaches, pose a serious threat to consumer privacy. Such incidents are becoming more

severe, as evidenced by recent news headlines surrounding Cambridge Analytica (Lapowsky, 2018)

and the Equifax breach (Cowley, 2017). These most recent events each implicated at least 80

million records, and their unprecedented scale has prompted policymakers at both the federal and

state levels to consider and pass legislation to prevent future events. Academics have seriously

engaged in the theoretical, technical, economic, and policy dimensions underlying privacy and

cybercrime for decades, but there remain a number of open empirical questions.

The cybercrime literature is largely concerned with detecting and deterring cybercrime. How-

ever, relatively little attention has been paid to predicting incidents of cybercrime. Compared to

traditional crime, cybercrime’s spatial dimensions are difficult to conceptualize, and cybercrimes

are somewhat rare events. Despite this difficulty, successfully predicting cybercrime could poten-

tially yield enormous benefits. Compensating victims of cybercrime for their losses after a breach

is difficult because it is hard to measure the damage (Mayer, 2016). Finding and punishing the

perpetrators of cybercrime may be nearly impossible, especially if they live in a non-U.S. jurisdic-

tion. However, deterring cybercrime by making it economically impractical may be more effective.

Much of cybercrime is financially motivated, and choking off financial incentives is a powerful way

to deter it.

In this piece, I propose predicting incidents of cybercrime primarily by looking at the potential

risk factors a company may exhibit. Cybercriminals may exploit vulnerabilities that can lead to

massive data losses, or other catastrophic consequences. From policymakers’ and law enforcement’s

perspective, it is difficult to identify risk factors without firms’ close cooperation, which may be

impractical. Developing a tool that uses publicly available information to develop cyberrisk profiles

can help policymakers and auditors prioritize their regulatory activities.

I utilize the fact that the Securities and Exchange Commission (SEC) requires numerous disclo-

sures from publicly traded companies. In particular, every publicly traded company must provide

a statement of its risk factors, and financial statements detailing the overall health of the company.

The goal of these disclosures is to signal potentially relevant information to investors. In addi-

tion, companies must disclose financial information about their stock performance, tax liabilities,

and assets to investors and regulators. The SEC is generally interested in harnessing its massive

troves of data for Artificial Intelligence applications. I propose using machine learning and Natural

Language Processing (NLP) techniques to train an algorithm that predicts future cybersecurity

incidents based on firm-level the text of a company’s filings. If successful, this could prove to be a

valuable tool for regulators as they attempt to identify risky companies, and develop interventions
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to prevent cybercriminals from exploiting those risks. Just as the FTC emerged in response to the

growing problem of trusts, this study highlights the potential for the SEC to take on a similar role

with regards to cybersecurity.

2 Law & Economics of Cyber Risk Disclosure

Cybersecurity regulation and auditing is an asymmetric information problem. Firms have private

information about their cybersecurity posture, and this information is not available to regulators

without intervention. Absent incentives to publicize this information, firms will prefer to keep this

information private. In the cybersecurity context, the law has thus far addressed this problem

by mandating disclosure of relevant cybersecurity risks alongside with other mandatory financial

disclosures. Failure to adequately disclose this information can result in an investor lawsuit, thus

imposing a cost on firms that fail to disclose risks, suffer an adverse cybersecurity event, and are

subsequently sued.

From a regulator’s perspective, obtaining information through these disclosures raises additional

questions. Assuming the regulator is interested in obtaining the maximum amount of information

about a firm’s cyberrisk, it will craft disclosure requirements with an eye toward optimizing this

quantity. These requirements’ design is critical because firms are not likely to disclose relevant

information unless there are other incentives to do so (such as signaling preparedness to regulators

and investors). This simple model is the basis for the relationship between regulators and firms in

a wide variety of contexts that involve audits, such as food safety inspections.

This simple model can be expanded by considering firms’ own abilities to understand their

cybersecurity postures. Although firms have private information about their policies, estimating

cyberrisk requires domain expertise and involves uncertainty with regards to relative risk compared

to similar firms. Again, because each firm’s cybersecurity posture is private information, firms are

unlikely to know what similarly situated firms are doing, and therefore cannot assess their own

risk relative to their competitors.

There are several vendors who develop risk assessment tools that provide companies with cy-

berrrisk scores. For example, Security Scorecard uses a combination of information volunteered by

a firm along with information scraped from a variety of security risk databases. It scores companies

on ten different categories, and returns an A-F letter grade, along with access to a dashboard that

helps companies pinpoint areas for improvement. Similarly, FICO offers a Cyber Risk Score ser-

vice. Like its consumer credit scores, the scores seem to range between 300 and 850. Both of these

services sell enterprise editions to companies and provide them with an comprehensible metric.

These services therefore ameliorate the costs firms face with regards to processing their own infor-

mation about their cyberrisks, and understanding their position relative to similar firms. These

scores are also sold to insurers who underwrite cybersecurity incident policies, thus potentially

solving the problem of distributing risk across similarly situated firms for rare events.

However, these scores remain private information for the firms in question, and therefore do not
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solve the problem of regulators having less information about firms’ relative cyberriskiness. A tool

that provides information about firms’ security postures to regulators would therefore help bridge

this information gap. Moreover, while these services advertise that they use machine learning tools

to generate their scores, and that the scores are a direct measure of riskiness with respect to suffering

a breach, the validation strategies are unclear and not publicly available. Benchmarking firms’

private assessments of their riskiness against real-world outcomes and making that information

available to regulators would be helpful for refining and targeting regulatory efforts such as audits.

Critically, creating a risk assessment based on public data gives regulators the ability to prioritize

their decisionmaking even if firms do not volunteer to assess their own cybersecurity postures.

3 Literature Review

There are few studies that directly predict future cybersecurity incidents. In large part, the cy-

bercrime literature is more concerned with causation rather than prediction. This is not unique to

cybercrime however, as the social sciences traditionally focus on causation. However, techniques

originating from data science open up opportunities to engage in useful prediction exercises as well.

Kleinberg et. al. argue this point in "Prediction Policy Problems." In this paper, the authors

argue that machine learning techniques do not get adequate attention in the social sciences, and

in economics in particular. They make the case that social scientists frequently miss interesting

prediction questions because of the traditional focus on causal inference techniques. To illustrate,

they use the toy example of a doctor deciding whether to perform a hip replacement on a patient.

The catch is that the hip replacement is very painful in the short term, and would only improve

the patient’s qualify of life after about six months or so. Thus, it is only worthwhile to provide this

treatment if the doctor can be reasonably sure that the patient will live at least that long. The

prediction problem is trying to accurately predict whether a patient will live for six more months.

If so, the hip replacement would be worthwhile. If not, there would be no need to put the patient

through unnecessary pain (and expend the time and money on the needless procedure). To do this

exercise, the decision maker does not need to know why the patient will live or not in the next six

months, but rather simply whether or not they will. This insight is the key to understanding the

motivation underlying this project (Kleinberg et al., 2015).

Susan Athey extends this discussion by discussing the intersection of machine learning, causal

inference, and policy evaluation. In particular, she highlights the importance of rigorously mapping

an algorithmic decision to an actual policy decision. While Kleinberg highlights a useful example of

applying simple off-the-shelf methods to a problem, Athey argues that some understanding of the

domain problem and causal mechanisms is still necessary for successfully implementing machine

learning in policy. Pairing predictive decisions with techniques drawn from causal inference will

help guide optimal policy decisionmaking (Athey, 2017)

Within the legal literature, Joshua Mitts makes a similar argument in "Predictive Regulation."

He notes that regulatory agencies frequently design rules and interventions that respond to "crises"
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or other events, but oftentimes, it would be better if these rules could be designed in a way that

anticipated crises rather than correct them after the fact. He motivates this line of reasoning by

pointing out that it is unlikely that the next financial crisis will be caused by subprime mortgage

lending the way the 2008 crisis was. Regulators could avert the consequences of future crises by

anticipating them and enacting relevant rules beforehand.

He argues that statistics provides many of the essential tools that can predict adverse events,

and therefore enable policymakers to pro-actively intervene. Specifically, he demonstrates that

natural language processing techniques could have flagged speculative language in the housing

market before the 2008 financial crisis. He points to the potential for using these techniques across

domain contexts could dramatically improve regulatory efforts (Mitts, 2014).

These papers provide a basis for exploring predictive cybersecurity policy. One need not under-

stand the exact mechanics of the motivations of cybercrime to predict which companies are most

at risk of suffering an attack. Instead, one must simply do a reasonably good job of predicting

accurately, and therefore better informing decisions about where to target interventions.

The most direct study of predicting cybersecurity incidents is a paper from the University of

Michigan entitled, "Cloudy with a Chance of Breach: Forecasting Cyber Security Incidents." The

authors in this study created an incidents database from a combination of the VERIS, Hackmaged-

don, and Web Hacking Incidents Database. These datasets constituted the outcome data, and they

were joined with features drawn from each organization’s cyber practices. These included features

such as DNS misconfiguration, spam/phishing activity, etc. Overall, using a random forest algo-

rithm, the authors report a high accuracy rate (90% True Positive, 10% False Positive) (Liu et al.,

2015).

Aside from the cybercrime literature, there is a rich literature surrounding SEC disclosures.

The theoretical foundations of corporate disclosure as a regulatory tool have been explored at

length in the economics, business, and law literatures. These literatures ask questions about the

optimal amount of disclosure to require, the incentives underlying honest and dishonest signaling in

disclosure statements, and whether insiders use information to their advantage prior to a disclosure.

These are all key questions that motivate the use of disclosure as a tool, and are particularly attuned

to the SEC’s disclosure requirements because of the high stakes involved with publicly traded firms,

and the relatively consistent and stringent regulations placed on them.

Christian Leuz and Peter Wysocki provide a general overview of the various literatures in "Eco-

nomic Consequences of Financial Reporting and Disclosure Regulation: A Review and Suggestions

for Future Research." They identify a gap across the board, namely that the study of disclosure

has largely focused on voluntary disclosures made by individual firms. In comparison, there is

relatively little work done that studies the effects of mandatory disclosures, and how well those

regulations achieve certain policy outcomes (Leuz and Wysocki, 2016). Various other studies that

look at the effects of mandatory disclosure regulations generally focus on the effect of disclosure

regulation and legislation on capital markets. The authors cite a number of studies that look at

SEC regulations dating back to the 1930’s that mainly look at how firms adjust behavior when a
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regulatory regime is imposed, and how capital markets react when disclosures are made. However,

these studies by and large do not make extensive use of natural language processing or qualitative

analysis that examines the content of the disclosures themselves, and therefore miss key questions

about the relationship between the regulations, disclosure content, and outcomes.

Kogan et. al. use the text of 10-K disclosures to predict stock price volatility. In particular,

they used a tf-idf featurization and support vector regression technique to predict price volatility.

They find that the text of 10-K disclosures provides substantial information to make predictions

about historic price volatility (Kogan et al., 2009).

Otherwise, there is also a growing interest in the use of data science, machine learning, artificial

intelligence, and other quantitative methods in the SEC. In a recent statement, Scott W. Bauguess,

Acting Director and Acting Chief Economist of the SEC, articulated the SEC’s goals in thinking

about the rise of these methods. He emphasized that SEC regulators would benefit from being able

to predict likely outcomes in a range of domains, and these tools provide unprecedented potential

to do so. As part of its commitment to developing such technologies, the SEC makes troves of its

own data and the raw text of disclosures available on its EDGAR interface (Bauguess, 2017).

The availability of these data has encouraged some preliminary work in implementing data

science approaches to regulation. Joshua Mitts and colleagues wrote a piece entitled, "The 8-K

Trading Gap" that looked at whether there was evidence of insider trading in the days preceding

a damaging disclosure statement. Similarly in the cybersecurity context, Mitts and Eric Talley

conducted a study that found evidence of insider trading prior to a cybersecurity breach disclosure

(Mitts and Talley, 2018).

4 Data

4.1 Outcome Data

For outcome data, meaning reported data breaches and cybersecurity incidents, I combine several

data sources that independently collect information about these events. In particular I use the Veris

Community Database (VCDB) (which feeds into the Verizon Data Breach Investigations Report),

the Privacy Rights Clearinghouse Chronology of Data Breaches Database, and the Identity Theft

Resource Center. Each of these database maintainers collects different information and the nature

of the incident. The most important distinction between these databases is the definition of

breaches and incidents. Simply put, an incident can encompass a variety of events including loss

of equipment, mismanagement of cybersecurity training, etc. Data breaches are one example of

a cybersecurity incident. In general, companies do not always need to report incidents because

they are not always material (in terms of securities regulation), but breaches are almost certainly

material. Thus, the outcome data includes both breaches and material incidents, but it is important

to note that these account for reported breaches and incidents. Because certain events, even

material ones, may be unreported (and even undetected), focusing on reported breaches necessarily

undercovers the universe of actual breaches and material incidents.
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I use the Privacy Rights Clearinghouse (PRC) database as the baseline for data breaches and

incidents, and augment the outcome data with breaches that are missing from PRC. I do this

primarily because PRC collects information that is useful for sketching out the policy problem that

may be missing from other databases, namely the type of incident, its location, and a description

of the incidents. Figure 1 shows the number of breaches and incidents in the PRC dataset from

2010 onward. Note that these are breaches among publicly traded companies successfully matched

in the dataset, as there are far more in the PRC database as a whole.

Figure 1: PRC Breaches Per Year

Notably, there are relatively few breaches among publicly traded companies in any given year.

Some years have slightly over 30 breaches in this data, and closer to 25 in others. Compared

to a universe of approximately 2000 companies 1, this makes breaches quite rare. In computer

science terms, this is referred to an "imbalanced learning" problem because one class ("no breach")

dominates in numbers over the other class ("breach").

Broken down by incident type, it is clear that the bulk of incidents is quite serious. In Figure

2, STAT refers to stationary computer loss, DISC to unintended disclosures, and PORT refers to

portable device loss. Meanwhile HACK refers to outside hacking or malware infections, and INSD

refers to a company insider intentionally breaching information. The number of incidents in the

HACK category grows over time, while unintentional data losses become less frequent over time.

This trend may suggest that companies are becoming more careful and better at preventing data

losses that result from carelessness. On the other hand, outside attacks have grown over time,

which can point to increased cybercriminal activity, or a substitution away from techniques like

phishing toward more sophisticated techniques like malware.

Looking at the descriptions of the events paints a similar picture. Figure 3 shows a word
1According to the Wall St. Journal, there are approximately 3500 publicly traded companies in the U.S. However

because of inconsistencies in how companies report their disclosures under different central index key numbers (ciks),

matching disclosure text, financial information, and incident information is difficult. Future iterations of this work

will work to complete the dataset used in this paper to include all companies across all U.S. stock exchanges. That

being said, aside from a handful of notable exceptions (e.g. McDonald’s), there are few breached firms that did not

make it into the dataset.
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Figure 2: PRC Breaches Per Year and Type

cloud visualizing the most common words in the descriptions of the incidents. PRC writes these

descriptions summarizing the description of the events from the source of the information about

the breach (newspaper article, mandatory disclosure, etc.). Social security, credit card, bank, and

email information are among the things talked about in these descriptions. These words give some

idea of the sort of information that is most frequently compromised in these sorts of incidents

among publicly traded companies. Geographically, incidents are concentrated in a handful of

places. Firms in New York, New Jersey, and California make up the bulk of the outcome data.

Given the prevalence of publicly traded companies in industries like finance and technology, this

is unsurprising. Figure 4 shows the geographic spread.

Figure 3: Word Cloud of Description of Incidents

4.2 Firm-Level Data

In machine learning applications, text features tend to perform best when combined with non-text

features. In this case, I collect firm-level data on each publicly traded company in my dataset.
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Figure 4: Map of Breaches and Incidents

These features are helpful primarily because they are already publicly available and easy to use,

and therefore can provide a reasonable baseline for how regulators may try to predict data breaches

without leveraging text information.

First, I extract industry codes and addresses. This information is helpful primarily because

firms belonging to different industries will likely prepare for and respond to cybersecurity incidents

in different ways. For example firms that handle health information are susceptible to stronger

negative consequences stemming from breaches, and may be more likely to invest more in precaution

as a result. One example of different incentives is that generally consumers do not have individual

causes of action after the announcement of a breach, but generally do enjoy causes of action when

protected health information is compromised. Industry codes are therefore potentially valuable

information, and geographic information may also be relevant insofar as it may serve as a proxy

for things like firm size, products, etc.

Industry codes are also interesting because different industries have varying cyberrisk profiles.

Figure 5 shows the number of breached and non-breached observations among a subset of the most

represented industries in the dataset. Some industries, such as real estate, are well-represented in

the dataset, but suffer relatively few breaches or incidents. Figure 6 shows the ratio of breached

observations relative to non-breached observations per industry. Although there are over 200

industries represented in the dataset, only approximately 40 suffer cybersecurity incidents at all.

Notably, 50% of observations associated with the financial services industry also correspond to

breaches. Telecommunications, software, and retail also have fairly high risk profiles.

I also incorporate firm level data from US Stocks Database maintained by the Center for

Research in Security Prices. Table 1 summarizes the features drawn from the US Stocks Database.

Critically, I avoid trying to predict how stocks may respond to cybersecurity incidents. Rather, I

use stock volatility as a proxy for a firm’s general riskiness, as measured by how investors respond

in capital markets. (Kogan et al., 2009) already demonstrated that text analysis successfully
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Figure 5: Industries with Breaches/Incidents

Figure 6: Ratio of Breaches/Incidents

predicts an asset’s stability fairly well. The basic idea here is to take that measure of riskiness,

and use it as a feature to predict cybersecurity riskiness.

4.3 Text Data

The text data source is the Securities and Exchange Commission’s (SEC) datasets that collect

companies’ annual 10-K disclosures. In these 10-Ks, firms are required to disclose potential risk

factors, including cybersecurity risks, to their investors. However, the SEC recognizes that compa-

nies need to manage the language in these disclosures so as to not create a roadmap for potential

cybercriminals to exploit vulnerabilities.
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Feature Name Explanation

CURCD Native Currency Code

TXDB Deferred Taxes

TXDBCA Deferred Tax Asset

TXDBCL Deferred Tax Liability

TXDITC Deferred Taxes and Investment Tax Credit

TXNDB Net Deferred Tax Asset (Liability) - Total

TXNDBA Net Deferred Tax Asset

TXNDBL Net Deferred Tax Liability

TXNDBR Deferred Tax Residual

TXP Income Taxes Payable

CSHTR_C Common Shares Traded - Annual - Calendar

DVPSP_C Dividends Per Share

PRCC_C Price Close - Annual - Calendar

PRCH_C Price High - Annual - Calendar

PRCL_C Price Low - Annual - Calendar

CSHTR_F Common Shares Traded - Annual - Fiscal

MKVALT Market Value - Total - Fiscal

ADDZIP Zip Code

CITY Headquarters City

State Headquarters State

Industry Title Standard Industry Code Industry

Table 1: Features Drawn from U.S. Stocks Database

4.3.1 Extracting Risk Disclosure Text

The most difficult data collection task is collecting all of the relevant SEC filings so that they can

be matched to the outcome data. The SEC provides an online search tool (EDGAR) for looking

up individual firms and their corresponding documents, but this does not lend itself to dataset

construction.

Luckily, a number of open-source packages are available that aid with this task. In particu-

lar, I use the "edgar" and "edgarWebR" packages in the R computing environment. The edgar

package provides a list of "Central Index Key (cik)" numbers that uniquely identify each publicly

traded company. The edgarWebR package includes functions for looking up companies by their cik

numbers, and extracting the raw text of their disclosures. A key feature here is that the package

also includes a method for tagging parts of a disclosure, such that a user may tag all text that

falls under the "Risk Disclosure" heading, which is always "Item 1A" on a 10-K disclosure form.

Because some forms may be ill-formed, doing this computationally may not capture every relevant
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aspect of every disclosure. However, it should be sufficient for most purposes.

After extracting the risk disclosure text, the next task is combining it with the outcome data

and other features. Ultimately, the resulting dataset contains information about a firm’s name, cik

number, filing date, risk disclosure text, firm-level features drawn from the U.S. Stocks Database,

and a logical indicator suggesting whether it was breached in the year following the publication of

its risk disclosure. An example dataframe can be viewed here.

4.3.2 Exploratory Analysis

An example of the raw text of a disclosure can be seen here. This filing is from Apple’s 10-K filing

in 2011. Under its risk disclosure, it says the following about cybersecurity risks:

The Company may be subject to breaches of its information technology systems, which

could damage the Company’s reputation, business partner and customer relationships,

and access to online stores and services. Such breaches could subject the Company to

significant reputational, financial, legal, and operational consequences.

The Company’s business requires it to use and store customer, employee, and business

partner personally identifiable information (“PII”). This may include names, addresses,

phone numbers, email addresses, contact preferences, tax identification numbers, and

payment account information. Although malicious attacks to gain access to PII affect

many companies across various industries, the Company may be at a relatively greater

risk of being targeted because of its high profile and the amount of PII managed.

The Company requires user names and passwords in order to access its information tech-

nology systems. The Company also uses encryption and authentication technologies to

secure the transmission and storage of data. These security measures may be compro-

mised as a result of third-party security breaches, employee error, malfeasance, faulty

password management, or other irregularity, and result in persons obtaining unautho-

rized access to Company data or accounts. Third parties may attempt to fraudulently

induce employees or customers into disclosing user names, passwords or other sensitive

information, which may in turn be used to access the Company’s information tech-

nology systems. To help protect customers and the Company, the Company monitors

accounts and systems for unusual activity and may freeze accounts under suspicious

circumstances, which may result in the delay or loss of customer orders.

The Company devotes significant resources to network security, data encryption, and

other security measures to protect its systems and data, but these security measures

cannot provide absolute security. The Company may experience a breach of its systems

and may be unable to protect sensitive data. Moreover, if a computer security breach

affects the Company’s systems or results in the unauthorized release of PII, the Com-

pany’s reputation and brand could be materially damaged and use of the Company’s

products and services could decrease. The Company would also be exposed to a risk of
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loss or litigation and possible liability, which could result in a material adverse effect

on the Company’s business, results of operations and financial condition."

This disclosure represents just one case, and Apple may be more conscientious than most

companies. That being said, this type of language reflects the sort of text that might distinguish

various cybersecurity practices. If there are patterns in the language, details, and other information

presented in cybersecurity risk disclosures, this may emerge through natural language processing.

More generally, we can see general patterns in the way that companies talk about their risks.

Figure 7 shows a topic model for two topics, trained on the text of the risk disclosures. These topics

give a sense of the sorts of terms that are likely to appear together in a disclosure. Specifically, the

concepts of "risk," "price," and "adverse" seem to come up, which should not be surprising given

the nature of section 1A.

Figure 7: Latent Dirichlet Allocation for 2 topics

4.4 Feature Engineering

In addition to firm-level and textual data, I also conduct feature engineering to manually create

some features that may be helpful for prediction purposes. From the firm-level data, I calculate

the difference between high and low stock prices for the year to reflect stock volatility. I also make

a logical indicator for companies that experiences breaches or incidents in previous years. Finally,

I calculate the ratio of breached observations to unbreached observations within an industry.

I also used keyword searches of the disclosure text to create features that mapped to the SEC’s

interpretative guidance. Some examples of manually created features and the associated keywords

can be seen in Table 2. Further feature engineering would use more sophisticated methods to pick

up on the concepts underlying the SEC guidance, but keywords are a first attempt to see how basic

models would do. Concretely, the SEC interpretative guidelines look at the following elements:
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• Occurrence of prior cybersecurity incidents

• Probability of the occurrence and potential magnitude of cybersecurity incidents

• Preventative actions taken to reduce cybersecurity risks and associated costs

• Aspects of business that give rise to material cybersecurity risks

• Costs associated with maintaining cybersecurity protections

• Potential for reputational harm

• Existing or pending laws that might affect cybersecurity risk

• Litigation, regulatory investigation, and remeditation costs associated with cybersecurity

incidents

Feature Name Key Words

Probability of Occurrence Cyberattack, Previous Incident

Preventative Actions IT Security, Encryption, Cybersecurity Awareness Training

Aspects of Business Personal Data, PII, PHI, Password

Reputational Harm Harm to Our Reputation, Reputational Harm

Existing Laws and Regulation Produce User Data, User Data Requests, Government Requests for User Data

Table 2: Features Engineered from SEC Interpretative Guidance

5 Policy Setup & Exploratory Analysis

In this section, I sketch out the decisionmaking process for SEC cybersecurity audits. I describe

the substance of cybersecurity audits, as well as trends in how many have been conducted over the

last few years. I then provide a simulation of how well randomly choosing firms to audit does at

predicting future breaches. I then provide a simple model that uses a logistic regression to estimate

the likelihood of a breach.

5.1 Background

The SEC is increasingly paying attention to cybersecurity risks and is taking active steps to safe-

guard investors. In 2017, the SEC established a Cyber Unit in its Division of Enforcement. Ac-

cording to the SEC’s website, the "Cyber Unit focuses on violations involving digital assets, initial

coin offerings and cryptocurrencies; cybersecurity controls at regulated entities; issuer disclosures

of cybersecurity incidents and risks; trading on the basis of hacked nonpublic information; and

cyber-related manipulations, such as brokerage account takeovers and market manipulations using

electronic and social media platforms." Most of the enforcement actions brought so far deal with
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initial coin offerings, but the SEC also pursues actions related to failure to adequately disclose

material events and cyberrisks.

In 2017, the Office of Compliance Inspections and Examinations (OCIE) conducted a pilot

program where it audited the cybersecurity policies and practices of 75 publicly traded firms. It

found that while firms generally had written policies in place about how they should deal with

cyberrisk and adverse events, oftentimes these written explanations were too vague to provide

helpful guidance to employees. Moreover, it was not always clear that firms actually implemented

some of their written policies, such as requiring and monitoring cybersecurity training. In general,

the SEC is expanding its auditing and enforcement efforts, as the number of firms subject to some

kind of audit (not just cybersecurity) increased from 8% to 13% from 2013 to 2018. As part of

this general expansion, the SEC is paying particular attention to cybersecurity concerns.

5.2 SEC Cybersecurity Audits

In 2015, the SEC launched its Cybersecuriry Examination Initiative. With this notice, the SEC

outlined the general procedure for its cybersecurity audits, and what minimum standard firms are

expected to uphold. The specific areas that SEC examiners focus on are:

• Governance and Risk Assessment

• Access Rights and Controls

• Data Loss Prevention

• Vendor Management

• Training

• Incident Response

In these audits, the examiners look at both a company’s written policies, as well as their actual

practices. There is now a cottage industry surrounding preparedness for these cybersecurity audits.

One source suggests that an audit may take about six days, and requires three SEC auditors (one

of whom specializes in cybersecurity audits).

5.3 Metrics

Before providing baseline simulations to motivate the core policy problem, I define basic metrics for

evaluating the efficacy of cybersecurity audits. Simply put, the prediction task here is predicting

whether a firm will suffer a cybersecurity breach or incident. There are various ways to define

whether a prediction task is working well. In this case, the task is predicting "breach" or "no

breach," with "breach" being the "positive" class. Some foundational building blocks to think

about predictions in this case include:
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• True Positives (TP): Predictions where the model accurately predicts the positive class.

In this case, these are instances when a model predicts a "breach" and there was indeed a

breach.

• False Positives (FP): Predictions where the model erroneously predicts the positive class.

In this case, these are instances when a model predicts "breach" when there was no breach.

• True Negatives (TN): Predictions where the model accurately predicts the negative class.

In this case, these are instances when a model predicts "no breach" and there was no breach.

• False Negatives (FN): Predictions where the model erroneously predicts the negative class.

In this case, these are instances when a model predicts "no breach" when there was actually

a breach.

In this context, true positives and false negatives are the most consequential metrics. Success-

fully predicting a true positive indicates that the model found an ideal candidate for an audit, while

predicting a false negative (failing to detect a breach) implies a situation where an audit may have

helped but the model failed to direct the intervention toward that firm. False positives imply that

the model would have a firm audited that may not have needed it, and while this imposes costs

on the agency, is not as consequential as a false negative. Meanwhile, true negatives are trivial to

predict in this context because relatively few firms are breached in any given year.

Delving deeper, these metrics can be combined in useful ways.

Accuracy :
(TP + TN)

(TP + TN + FP + FN)

Accuracy is essentially a measure of how many times the model was correct in its predictions

in either direction, divided by the total number of predictions it made.

Recall :
TP

TP + FN

Recall is a measure of successful the algorithm was at detecting instances of the positive class.

In this case, the ratio is an expression of what fraction of the actual breaches the algorithm

successfully predicts.

Precision :
TP

TP + FP

Precision is a measure of how successful a model at filtering out noisy predictions. Put differ-

ently, it is a statement of what fraction of all the predictions of the positive class were actually

in the positive class. In this case, it is saying of all the firms that the model predicted would be

breached, how many were actually breached.

5.4 Random Audits

In 2015, the SEC began its cybersecurity auditing program. That year, the SEC conducted 75

audits. I simulate these audits to provide a baseline for an algorithm to improve upon. To do this,
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I simulate randomly choosing 75 firms to audit, and plot the distributions of how well these audits

predict eventual breaches. I ran 100,000 simulations of picking 75 firms to audit at random, and

then plotted distributions for true positives, recall, and precision. To accomplish this, I looked at

breaches for the 2015-2016 fiscal year, where there were 10 breaches.

Figure 8 shows the distribution of true positives across these simulations. Across 100,000

simulations, the modal outcome is to successfully detect 0 breaches in advance. In the tail of the

distribution, randomly auditing may pick up on one or two eventual breaches, but hardly ever

exceeds these figures. Similarly, recall follows the same pattern, as seen in Figure 9.

Figure 8: Distribution of True Positives in Random Audits

Figure 9: Distribution of Recalls in Random Audits
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Even if an algorithm could not improve on true positive and recall measures, there is substantial

room to improve on precision. Figure 10 shows the distribution of precision across simulations of

random audits. Even in cases where a random audit successfully predicts a breach, the precision

score lies somewhere between .015 and .025. The takeaway here is that of the 75 audits conducted,

about 73-74 are potentially wasted. Any improvement over this precision score would make these

audits more efficient.

Figure 10: Distribution of Precisions in Random Audits

5.5 Logistic Regression

Next, I train a logistic regression to simulate how well a simple algorithm performs on this predic-

tion task. Using the same subset as I did with the random audits, I train the logistic regression on

the disclosures. In this case, I featurize the text of the disclosures using the term frequency-inverse

document frequency (tf-idf) technique. The simplest natural language processing (NLP) model

that could be used is the "bag of words" model where the columns in the dataset correspond to

counts of how many times a given word appears in a document. In this context, a document is a

10-K disclosure for a particular company and year. Instead of using a bag of words, tf-idf takes

the number of times a term appears in a given document (term frequency), and then multiplies

that by the inverse of the number of documents that the term appears in (idf). The basic intuition

here is that more weight is given the more times a term appears within a document, but then

weight is decreased the more common a term is across documents. Thus, tf-idf does well classi-

fying documents where individual documents have key terms that do not appear elsewhere in the

corpus.

Table 3 shows a confusion matrix that shows how well a logistic regression does with tf-idf

weighting at predicting outcomes for the 2015-2016 fiscal year. A confusion matrix is a useful
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tool for visualizing how well an algorithm did at a classification task, and common metrics like

accuracy, recall, and precision are easily derived from it. Of the 4209 companies in this dataset,

5 suffered breaches. The model predicted 4 companies would suffer breaches, but none of these

predictions overlapped with actual breaches. The model did successfully predict almost every case

of "no breach," but this is of little value given the severe imbalance in the dataset.

observed no breach observed breach

predict no breach 4200 5

predict breach 4 0

Table 3: Logistic Regression Confusion Matrix

In this case, the simple model does even worse than random auditing. While a combination of

logistic regression and tf-idf has advantages with regard to transparency and interpretability, more

complex models are likely to do better in this case. Given that this logistic regression had 0 true

positives, it similarly had a recall and precision of 0.

The low baselines implied by both random auditing and logistic regression motivate the possi-

bility for exploring other methods that can enhance successful prediction of cybersecurity incidents.

The poor performance of a simple logistic regression may also point to why the SEC and other

regulatory agencies have thus far been slow to adopt algorithmic approaches to prediction policy

problems.

6 Methodology

6.1 Featurizing Text

To featurize the text (turn text into quantitative information), I use word2vec. Word2vec is a

set of popular word embedding models first introduced by Mikolov et. al. (Mikolov et al., 2013).

Word2vec is a "word embedding" technique, meaning it converts words into numerical vectors, and

puts substantively similar words into vectors that are close together. Specifically, I use document-

averaged word embeddings from word2vec to transform the raw text of annual disclosures into

quantitative features.

6.1.1 Frequency-Based Featurization

The simplest model for featurizing text would be the "bag-of-words" approach. A bag-of-words is

a frequency-based scheme that essentially counts how many times a word appears in a document

and creates a feature for that count. One popular extension of the bag-of-words technique is the

"term frequency-inverse document frequency" approach which counts the number of times a word

appears in a document, but divides that figure by the number of times that word appears across a

corpus. Thus, words that are unique to a document will get higher weights than words that appear

frequently across documents.
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Frequency-based approaches are useful because they are easy to implement and interpretable.

Tf-idf in particular can be quite powerful when dealing with a classification task where there are

words that are good as discriminating between class labels. For instance, in e-mail spam detection,

certain key words show up in spam e-mails that rarely show up in legitimate ones. A model trained

on tf-idf or bag-of-words features would be able flag spam simply by looking at whether words

associated with spam class labels appear in a document. The disadvantage of these approaches is

that in more complicated classification tasks, frequency based embeddings may sacrifice too much

of the substantive meaning of words to be useful predictors. Whereas in the spam example there

is a clear link between the presence of some words and the outcome label, this relationship is not

always so strong. In the context of this study, word frequencies likely do not so neatly map into

the outcome of a firm being breached, thus warranting considering more information.

6.1.2 One Hot Encoding

One way to capture more of a word’s meaning in context is the one-hot encoding approach. A

one-hot encoder essentially takes a collection of words (sentence, paragraph, or document), and

creates logical indicators for whether words in the corpus appear in that collection. For example,

if we had five words in a feature space, "I," "love," "data," "is," and "cool" then the following

sentences would be encoded as follows:2

I love data is cool

I love data 1 1 1 0 0

love is cool 0 1 0 1 1

data is cool 0 0 1 1 1

Table 4: One-Hot Encoder

This featurization approach is useful primarily because it encodes sentence-level (or para-

graph/document) information in a numerical vector. 3 By representing sentences as vectors,

more information about the distance between sentences is available to the analyst. However, the

one-hot encoding still does not understand the meaning of the sentences. Although "love is cool" is

close to "data is cool" in vector space, these vector representations still depend on the appearance

of certain words, rather than their actual substantive meaning. Moreover, in this application I am

looking at entire documents. The feature space quickly becomes high-dimensional when one-hot

encoding thousands of long documents, which increases computational complexity.
2This example is borrowed from: https://towardsdatascience.com/an-intuitive-explanation-of-word2vec-

208bed0a0599
3A "vector" in this case should be understand in its linear algebra context. A vector represents an object with

a magnitude and direction (for instance, the acceleration of an object), and vectors can be operated on in a vector

space, which is a collection of vectors. In this case, the vectors encode information about a sentence, and situates

each sentence in a vector space relative to other sentences.
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6.1.3 Word2Vec

Word2Vec is a word embedding technique that uses a prediction-based approach to creating word

vectors. The training process for word2vec involves predicting words based on their surrounding

context. 4 Using the context surrounding a word as input, this context is passed through a

neural network to produce vectors with probabilities to predict target words. The algorithm then

uses a technique called backpropogation to adjust the weights it assigns to these vectors until it

minimizes the loss function (or more simply, until it does as well as it can at predicting words).

This process then outputs vector representations for each word, and words with similar contexts

will have vectors that are closer together in vector space. The canonical example of the advantage

of this approach is encapsulated in this relationship:

~king − ~man+ ~woman = ~queen

Taking the vector for king, subtracting the vector for man, and adding the vector for woman

yields a vector that is very close to the vector for queen. Thus, the word2vec representations are

able to capture the idea that the concept of a queen is similar to king, except for a difference in

gender. Thus, these word2vec vectors are able to capture more contextual meaning than word

frequency or order.

I use word2vec and update the vectors with the text of the SEC disclosures. I then take these

vectors, and average them across documents. Doing so creates a document-level vector that is

built upon the tuned word vectors. These document-level vectors then become features in the

downstream classification task, which is predicting firms that are likely to suffer cybersecurity

incidents.

6.2 Modeling

6.3 Constituent Models

I use several constituent models before fitting an ensemble model. Importantly, each of these

models is well-suited to classification tasks, though some can be used for regression as well. In

machine learning terms, a classification task is distinguished from a regression task by the nature

of the target variable (the variable that we are trying to predict). Classification is predicting which

class label an observation belongs to. Binary classification predicts a target that can take one of

two class labels, whereas multi-class classification predicts targets with many labels. In contrast,

regression predicts continuous target variables. In this case, predicting whether a firm is breached

or not is a binary task.
4This prediction can either use Continuous Bag-of-Words (predicting a target word from surrounding words) or

skipgram (predicting surrounding words from a target word). CBOW does better with larger datasets and common

words, whereas skipgram is better for smaller datasets and rare words. See Figure 11 for an illustration.
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Figure 11: Illustration of Continuous Bag-of-Words and Skipgram, taken from Mikolov et. al. 2013

6.3.1 Logistic Regression

Logistic regression (logit) is a common algorithm in the social sciences, and is especially popular for

binary classification tasks. Most social science applications of logistic regression report coefficients

on the features (independent variables or covariates in social science language) for causal estimates.

These coefficients are generally reported as log-odds, though sometimes are exponented to odds

ratios. Critically, in a prediction context, the coefficients are not the object of interest for analysts.

Rather, only the predicted probabilities for the target in the test set are relevant for the analysis.

In a prediction setting, the causal interpretation of various coefficients is not especially relevant

because a policymaker does not need to understand the precise relationship between the outcome

and a feature to make a decision.

6.3.2 Poisson Regression

Poisson regression is a generalized linear model that is popular for modeling count data. Gener-

ally, poisson models are not used for binary outcome data, but I use one here because of poisson’s

strength in modeling rare events. In this case, poisson is akin to using a linear probability model.

Essentially, these approaches use a linear model to estimate a binary outcome. The main disad-

vantage of these approaches is that without restrictions, it is possible to predict values outside the

range [0,1], which would be invalid for a truly binary outcome.
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6.3.3 Classification Tree

Decision tree learning is a machine learning approach that predicts a target value through a series

of decision rules. Trees can be used for both classification and regression problems. The basic idea

behind a decision tree is that learns the relationships between features and targets by growing a

tree that encapsulates various decision rules. The tree starts at an initial node, and then makes a

split into two new nodes based on some decision rule. At each of these nodes, the tree then splits

again based on a new rule. This process iterates until the tree cannot make any more splits. A

frequently used example to illustrate this concept is a classification tree that predicts whether a

passenger on the titanic would survive given the rules for who was allowed to board a lifeboat (See

Figure 12).

Figure 12: Titanic Survival Classification Tree

6.3.4 Random Forest, Gradient Boosting Classifier, and Adaptive Boosting

Classification trees have a few drawbacks, however. Without pruning (reducing the depth of a tree),

trees tend to overfit the data, thus achieving poor performance out-of-sample. Trees also initialize

from a randomly chosen feature, and make probablistic splits. Thus, any given tree may be overfit

to idiosyncrasies in that particular random sample. To address these problems, classification trees

are frequently combined in "ensemble" methods.

One approach to solving these problems is using a "bagging" technique such as a random forest.

A random forest grows many classification trees in parallel, and then has each tree vote for the

outcome. The prediction with the majority vote is the final prediction for the random forest.

Random forests are popular because they reduce the tendency of single trees to overfit, and can

be trained quickly with parallel processing.

Another ensembling approach for trees are "boosting" algorithms. Whereas bagging grows trees

in parallel, boosting instead iteratively combines weak classifiers (classifiers that do slightly better

than a coin toss at predicting an outcome) to create a strong classifier (a classifier that has close to

0 error). Boosting takes longer to train than bagging because it is iterative, but has the advantage
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of having each sequential model learn from the mistakes of the previous models. In this case,

I use gradient boosting and adaptive boosting, which primarily differ in how they combine weak

learners. Gradient boosting learns from the errors (pseudo-residuals) in the previous iteration of the

algorithm. Adaptive boosting learns by upweighting data points that were incorrectly classified in

the previous iteration, thus forcing the algorithm to learn how to deal with more difficult decisions.

Ensembling trees is especially attractive in an imbalanced dataset setting. In this case, the

cases of "no breach" far outnumber the "breach" observations. Ensembles are better at predicting

minority class observations because they reduce noise from overfitting, and are built in a way that

focuses on harder cases.

6.3.5 Soft Voting Ensemble Learner

Finally, I take all of the constituent algorithms, and combine them into a soft-voting ensemble

classifier. Using the predicted probabilities from each model, the ensemble takes the average of

these probabilities and makes a decision based on that average. This approach can be contrasted

with hard-voting classifiers where each model takes a vote, and the majority vote is the ensemble’s

decision. The soft voting ensemble takes advantage of the fact that each of these models outputs

predicted probabilities, and combines them into a meta-learner.

Ensemble classification is helpful primarily because it ameleriorates idiosyncrasies that may

plague any individual model. Moreover, knowing the "correct" model a priori is impossible, and

ensembles help approximate the best possible model by averaging constituent models. Ensembles

take advantage of the fact that if each model is more likely than not to make the correct prediction,

combing their predictions will boost the accuracy because it is less likely that idiosyncratic errors

in one model will turn into incorrect predictions.

6.3.6 Temporal Cross-Validation

A potential problem in building machine learning models on temporal data is the tendency for

future information to leak into the training process. In typical machine learning modeling, the

analyst splits the data into train and test sets (sometimes adding a "validation" set as well). The

train/test split is done at random in most applications, and the model is then trained on the

training data, and its predictions are compared to the true observations in the test data. However,

this framework quickly breaks down with temporal data. If the splits are done randomly with

temporal data, the machine learning algorithm learns patterns from a future time period, and its

performance will be artificially boosted when it is tested on data from a previous time period.

For instance, imagine if the training set randomly included the Target 2013 breach outcome in its

training data, and the test set included the 2011 and 2012 financial disclosures timeframes. When

testing the algorithm, it will almost assuredly predict a breach because it borrows information

from a future year. This would make the algorithm seem accurate, but would not reflect actual

deployment conditions, as a regulator will not have advance notice of a breach (indeed, such

information would obviate the need for an algorithmic approach).
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Instead, I utilize a "temporal cross-validation" approach. The intuition here is that the model

is built sequentially so that it never borrows information from the future. Using a k-fold approach,

each fold will represent a sequential year. Each successive fold is a superset of the previous fold,

thus ensuring that only past information is used. For instance, for each entity, we might aggregate

features in 2011 and 2012, train on outcome data from 2013, and then validate/test on outcome

data from 2014. (for Data Science and at the University of Chicago, 0). Figure 13 illustrates the

basic logic of temporal cross validation.

Figure 13: Illustration of Temporal Cross-Validation

6.3.7 Over and Undersampling

The major problem with predicting cybersecurity incidents is that although they are costly, they

are relatively rare. In machine learning terms, this translates to an imbalanced learning problem.

Essentially, instances of the majority class ("no breach") vastly outnumber instances instance of

the minority class ("breach"). Thus, if an algorithm was trained to optimize only for accuracy, it

would do quite well by simply picking the majority class every time. From a policy perspective,

optimizing for accuracy alone is not always fruitful because regulators are oftentimes concerned

with detecting and preventing rare but significant events.

One way to overcome this problem is to utilize over- and under-sampling techniques. Oversam-

pling takes instances of the minority class and upsamples them in the training process, whereas

undersampling takes instances of the majority class and downsamples them. Oversampling comes

at the cost of potentially overlearning idiosyncrasies in minority class, and thus generalizing poorly.

Undersampling comes at the cost of throwing away potentially relevant and useful information,

thus reducing the algorithm’s overall accuracy.

In this application, I combine over- and under-sampling together. Combining both helps capture

some of the benefits of each, while ameliorating the disadvantages of each. In future iterations, I

may look to other techniques such as Synthetic Minority Oversampling Technique (SMOTE) and
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Random Oversampling Examples (ROSE) instead of a simple oversample. SMOTE in particular

may yield benefits as it avoids some of the overfitting problems of simple oversampling.

7 Results

Although more work is necessary before deploying a model in this context, early results are promis-

ing. Compared to random audits or no audits, algorithmic predictions more successfully target

risky companies and industries. In this section, I present the results of various model configura-

tions. I present a baseline model with just firm-level information, a model trained only on text,

a model that combines both firm-level information and text, and a final model that selects the

most predicitve firm-level features, and discards unimportant features. In general, combining firm-

level data and text features works best for prediction, and reducing model complexity aids with

improving precision.

7.1 Baseline Results

The first model I present is a baseline model that uses only firm level features. These include the

features described in Section 4.2. Figure 14 shows the results for this baseline model without

any additional text features. I use logistic regression, poisson regression, classification tree, ran-

dom forest, gradient boosting classifier, adaptive boosting methods. Although logistic regression

performs quite well on recall (the ratio of firms predicted to be breached over the firms that were

actually breached), this performance comes at the expense of accuracy (ratio of correct predictions

to incorrect predictions) and precision (ratio of correct predictions to correct plus incorrect pre-

dictions). Essentially, the logit model here too aggressively guesses the positive class ("breach") in

this case. The tree-based methods trade off some of this recall for more precision, though still are

not as precise as we might hope for in a policy application. At best, the tree-based methods achieve

around a .1 precision. While recall is more important in this application, too low a precision score

implies that the SEC would erroneously flag too many audit candidates. Given limited resources,

enough to conduct about 75 audits per year, flagging too many candidates potentially misses some

risky targets.

Figure 15 shows feature importances from the random forest model. As suggested by the

exploratory, industry riskiness is an important feature for predicting breaches. Proxies for firm

size such as market value and tax liabilities are somewhat predictive, as are measures of stock

volatility. Notably, only a few indicators for industry (software, retail) and geography (New York

and Chicago) are predictive, with other dummy variables for these values taking on 0 or very low

feature importance.

7.2 Text Only Results

Next, I show models with only text features in Figure 16. These models exclude any other firm-

level information, as well as the manual feature-engineering of key terms corresponding to SEC
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Figure 14: Baseline Results

interpretive guidance for describing cybersecurity risks. These results underperform the baseline

models, regardless of the particular model chosen. In general, this result is not surprising. That

being said, the text alone does seem to be somewhat informative.

7.3 Baseline + Text Results

Combining the baseline features with text features performs similarly to the baseline alone. While

some models make some gains on recall, this may just be noise. Precision also seems to be a

bit lower across models. Figure 17 illustrates these results. Again, these results are driven by

including all possible features in the model, potentially leading to overfitting.

7.4 Selected Features Results

For the final models, I remove the unimportant firm level features from the baseline features and

retrain each model. Removing these features and retraining the models considerably improves

precision, though at the cost of some recall. Figure 18 illustrates this tradeoff. Looking at random

forest, gradient boosted classifier, and adaptive boost, precision improves to about .4 in most years,

though recall drops to about .5. In this context, this tradeoff is probably worthwhile as the higher
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Figure 15: Feature Importance in Baseline Random Forest

precision suggests that the models are more judiciously picking good candidates for audits, rather

than flagging a broad range of possibilities that exceed regulators’ auditing capacity.

8 Discussion

8.1 Precision-Recall Tradeoff in Predictive Auditing

While this study is specific to cybersecurity, it speaks to a larger problem in law regarding govern-

ment auditing to detect rare events. Governments frequently employ auditing as a tool to ensure

that private actors are complying with regulations. In U.S. federal law, some common examples

include Internal Revenue Service tax audits, Department of Labor fair labor standards audits,

and Federal Emergency Management Agency disaster relief audits. These audits commonly target

underlying activities that occur infrequently among legitimate activities. Most people adequately

report and file their tax liabilities, most employers comply with fair labor standards, and most

recipients of FEMA funds properly administer those funds. Indeed, a tiny percentage of each

of these activities constitutes the sort of fraud or vulnerability that these audits are designed to

uncover. Detecting these rare events is a problem because the government has limited resources

to conduct audits. Given these constraints, governments may be concerned with ensuring that
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Figure 16: Text Only Results

auditing activity is directed towards undesirable activities.

In machine learning terms, this problem is best conceptualized as an imbalanced learning

problem. Imbalanced learning refers to imbalance in the outcome variable of a dataset. In this

cybersecurity context, the negative class ("no breach") swamps out the positive class ("breach"), as

approximately only 2% of firms experience a breach each year. The core problem with imbalanced

learning problems is that accuracy can be optimized simply by guessing the dominant class every

time. However, when used to make to an actual decision, this type of model would not be useful.

There are technical approaches to imbalanced learning problems, such as random over- and under-

sampling as employed in this study. Thinking more broadly about how to map metrics to a policy

context is also an important step though.

In policy contexts, precision and recall become relevant measures, but there is a tradeoff between

them. One could achieve a perfect recall (finding all possible breaches) by assuming that every

observation is a breach. However, the precision of this model would be quite poor, and if a

government agency had the resources to audit every firm then an algorithmic approach would not

be necessary. Similarly, a model could be very conservative and only make one guess about firms

likely to be breached, and if that guess is correct, it could stop making predictions. While this

approach would yield a perfect precision, it would miss many relevant cases, and again not be
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Figure 17: Baseline + Text Results

helpful for regulators who are trying to find the riskiest companies. This concept holds outside the

cybersecurity context as well, as regulators frequently are implicitly optimizing the precision-recall

tradeoff when targeting their auditing activities.

Framing the precision-recall tradeoff as part of a policy decision can help a decisionmaker

determine the optimal amounts to trade off on each metric. In this cybersecurity context, a

policymaker may prioritize maximizing true positives, maximizing recall, and minimizing false

negatives, while tolerating weaker precision and a high number of false positives. These priorities

are plausible because false negatives (failing to detect a breach) are more costly than false positives

(auditing a firm that was not going to be breached). Similarly, recall (finding all potential breaches)

may be more important than precision (the fraction of flagged firms that are actually breached).

That being said, this tradeoff does not suggest optimizing these quantities by totally sacrificing

precision for recall. Rather, contextualizing the tradeoff within the SEC’s actual auditing program

can help illuminate how policymakers should use these metrics.

To illustrate, assume that the SEC’s auditing capacity is fixed at 75 audits per year. It will

not conduct fewer than 75 audits even if doing so would be cheaper, nor does it have the resources

to conduct more in a given year. Within these constraints, the SEC must optimize where to place

these 75 audits to attempt to successfully detect companies that will be breached. Given that
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Figure 18: Selected Features Results

the number of audits is fixed, the precision is somewhat irrelevant. If a model flags 20 potential

breaches, but only 5 were actually breached, the precision would be .25, but the audits of the 15

non-breached firms do not represent any marginal cost to the agency. Thus, the SEC may prioritize

recall instead because it wants to make sure most of the riskiest firms do end up in the audit pool,

as it will not have additional resources to audit those firms if they are not flagged. In situations

where an agency wishes to conserve resources by reducing the number of audits, or the number of

audits it makes is unbounded, prioritizing precision may be more sensible.

Figre 19 shows this tradeoff in the cybersecurity context. Using the predicted probabilities

from the gradient boosting classifier model, it plots the precision-recall tradeoff. The "Random

Audit" model guesses firms to pick for audits at random, and this model does quite poorly on

precision. The GBC model on the other hand correctly flags several breached firms before guessing

incorrectly. Importantly, while precision drops considerably once recall reaches about .5, auditors

need not stop at that point. With 75 audits, the SEC could conduct audits up to a recall of about

.71 before running out of resources. Thus, while auditors would tradeoff a considerable amount

of precision with additional audits, doing so is not necessarily fatal to the enterprise as there are

resources to spare in this case.
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Figure 19: Precision-Recall Tradeoff

8.2 Simulation on Real-World Outcomes

I conclude with an illustration of how an algorithmic auditing approach improves upon a ran-

domized approach. Figure 8 shows how many breached firms would be detected in advance for

the 2015 fiscal year across 100,000 simulations. Occasionally, a regulator picking firms at random

might find one breached firm, and rarely would find two. In most simulations, a random search

would not yield any members of the positive class.

Figure 20 demonstrates the utility of an algorithmic approach over a randomized one. Using

the assumption that SEC audits are totally effective at deterring a potential breach, it illustrates

the potential reduction in breaches each year. Assuming 75 audits are conducted in each given

year, we see an average reduction in breaches of about 18%. In the 2015 fiscal year, of the 24

breaches in the dataset, 5 are flagged in advance.

As seen in Figure 18, using the final models that select out unnecessary features, in most years

the models achieve both recall and precision in the neighborhood of .4. While a poor precision

score would generally be a problem in most machine learning applications, these results are actually

quite promising when contextualized as a public policy problem. Although regulators would need

to sift through several companies that are unlikely to be breached, the high recall suggests that

they will eventually find companies that would have been breached and can act to bolster their

cybersecurity practices. Most importantly, the algorithm eliminates a huge number of companies

that it is confident will not be breached, thus saving regulators time and allowing them to focus

their regulatory efforts on a smaller subset of companies. Table 5 illustrates this point with sample

results from the ensemble algorithm’s 2015/2016 predictions. A regulator could be furnished with

a list that safely eliminates several companies from consideration, while allowing them to focus on
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Figure 20: Breaches With and Without Predictive Audits

the likeliest breach targets.

The main normative takeaway for legal scholarship as a whole is that there is value to pre-

diction. There is currently a live debate within law and law-adjacent literatures about the use

of machine learning and prediction in legal contexts. Much of the attention thus far has under-

standably been placed on applications where decisions involve vulnerable populations and legally

protected classiciations like race and gender. Thus, many of the examples focus on areas like

employment, housing, and criminal law. This scholarly debate would be enriched by considering

applications that do not implicate the same equity concerns. In this case, predicting the cyber-

riskiness of corporations shares little similarity with the aforementioned examples on equity and

fairness grounds. Instead, improving auditing efforts only improves efficiency, and is beneficial to

regulators, corporations, and the public alike. Audits themselves are not costly for audited firms.

While some firms may bear more of the costs of precaution, this allocation is sensible if they carry

more of the risk. [Cite barocas/selbst, coglianese, lehr]

8.3 Simplifying Decisionmaking

Regulators may also choose to deploy simpler models that are more easily explained to outside

stakeholders. Certain firm-level features are more predictive than others. For instance, a firm’s

industry’s riskiness, location (New York, California, or Illinois), and stock volatility can be used

to construct simple decision rules. These models can also incorporate flags for whether a firm’s

disclosure contains elements from the SEC interpretative guidance, and build a simple model to

guide auditing decisions. For complex policy decisions, simplifying models can help with conveying

the reasoning behind a legal decision. Simple models may sacrifice performance on certain metrics,

but the added advantage of interpretability and ease of construction could be worthwhile. Jung

et. al. detail this logic in depth. They argue for this "select-regress-and-round" approach. They
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COMPANY NAME filing date breach pred

hyatt hotels corp 2/18/2015 yes yes

target corp 3/11/2016 yes yes

chevron corp 2/25/2016 yes yes

microsoft corp 7/31/2015 yes yes

tennessee valley authority 11/20/2015 yes yes

apple inc 10/28/2015 yes yes

monster worldwide inc 2/11/2016 no yes

iron mountain inc 2/26/2016 no yes

quest diagnostics inc 2/26/2016 no yes

commercial metals co 10/30/2015 no no

medallion financial corp 3/11/2015 no no

marriott international inc 2/19/2015 no no

Table 5: Sample Results for Predicting 2016 breaches. The "breach" column indicates firms that

were actually breached in 2016, "pred" indicates firms that were predicted to be breached in 2016.

Blue indicates a "breach" value and red indicates a "no breach" value.

advocate for a pipeline where the analyst builds a complex model that serves as a benchmark, and

then create simple rules to test against both this benchmark and human decisions. They highlight

the use of simple rules in judges making bail decisions, and note that simple rules both outperform

human judges and come close to complex models like random forests (Jung et al., 2017).

In the cybersecurity context, we can see the value of this framework by using a decision tree and

benchmarking it against the ensemble model. Figure 21 illustrates a classification tree built with

these features alone on the same 2015-2016 period used above. The basic logic of the tree makes

splits based on market value and industry riskiness to make predictions about whether a particular

observation is a "breach" or "no breach." Although the model does slightly worse on recall than

more complex models, it still does relatively well and is much simpler to visualize. In lieu of the

more complex models used earlier, the SEC could choose to use a simple classification tree with

some manually engineered features to achieve comparable results. Importantly, this simple model

still avoids the accuracy trap of flagging everything as "no breach," and the recall trap of flagging

everything as "breach," as seen in Table 6.

One way to approach this problem would be to start with the more complex models described

above, and then map their complex decision rules to simple ones for deployment in practice.

The exploratory analysis and complex modeling helped surface insights into which features were

genuinely informative, the types of mistakes that different modeling choices would lead to, and the

best possible performance of a model in this context. From these complex models, it is possible

for a regulator to narrow down the features to prioritize, and focus on creating a decisionmaking

pipeline that utilizes that simpler information (as I do here with a classification tree). This simpler
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model can be used to explain the process and justification for important legal decisions, even if

more complex models were fit first. Critically, these models should not be static. Observing real-

world outcomes, adjusting regulations, and retraining models should be a dynamic process that

informs human decisionmaking in policy contexts, not replaces it.

Figure 21: Classification Tree

observed breach observed no breach

predicted breach 9 13

predicted no breach 9 872

Table 6: CART Confusion Matrix

9 Future Work

There are several areas of improvement for future work to iterate upon these results. These

results are drawn from matching outcome data from public databases to publicly traded companies.

However, this construction is not complete. For instance, the SEC flagged 87 breaches in 2017,

compared to the approximately 20 breaches I found for the same year by manually cross-checking

publicly reported breaches to companies in the dataset. Resolving these inconsistencies would help

bring the models closer to the ground truth, and likely help the class imbalance problems as well.

A qualitative component that includes discussions with SEC auditors, firm managers, and in-

house cybersecurity personnel would also be helpful. Many of the assumptions about how managers

word their cybersecurity disclosures and report their cyberrisks are based on theoretical reasoning
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and second-hand sources. Gaining more insight into how disclosures are actually crafted, and

how companies think about their own cybersecurity postures, would be tremendously helpful in

building better models. Moreover, speaking to regulators and learning what their priorities are

would help determine which metrics to prioritize, and how to target audits. In particular, gaining

more insight into the exact mechanism underlying the current choice of firms to audit would help

establish a realistic baseline beyond random audits.

Finally, a field experiment that validates the modeling would be invaluable. While the temporal

cross-validation provides some evidence of how the model would have worked historically, this is not

a guarantee of performance in the future. Randomizing firms flagged by the model and observing

differences in breach rates would validate the model’s predictions. Creating an interplay between

training new models and real-world testing will ensure that the models stays up-to-date and usable.

Most importantly, targeting interventions at the firms most likely to benefit from them creates an

opportunity to assess the causal effect of the audits themselves, and reevaluate the SEC guidelines

and audits in light of quantitative evidence.

10 Conclusion

Like with many policy areas, privacy and cybercrime scholarship has traditionally focused on the

theoretical underpinnings of causation. This study looks to expand the traditional scholarship by

reframing cybersecurity as a prediction policy problem. Predicting incidents before they occur

gives policymakers and organizations many more opportunities to prevent the privacy harms that

stem from massive data losses. Prevention would be more effective than restitution, and tools that

can aid in this goal would reshape the current discourse around data protection law that focuses

mainly on harms.

If successful, this study could also bolster current efforts to incorporate artificial intelligence and

data science into regulatory efforts. Mandatory disclosure is a commonly used and powerful legal

mechanism for ensuring better institutional behavior. Scholars and policymakers have extolled

the virtues of disclosure for decades. New computational tools potentially allow us to harness not

only the fact that a disclosure is made, but the actual content of a disclosure. Incorporating data

science into the framework of disclosure law could spur a flurry of innovative scholarship. Tools

that make sense of the massive amount of text generated by mandatory disclosure can improve

regulatory efforts, increase consumer information, and promote healthier corporate behavior.
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