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The perception that scientific psychology is in a state of “crisis” results from a perfect 
storm of coinciding developments.1 First, there has been a steady stream of new 
cases of fraudulent data fabrication (and subsequent article retractions), triggered in 
part by new statistical methods of forensic re‐analysis of published results (see Fang, 
Steen, & Casadevall, 2012; Simonsohn, 2013). Second, researchers have reported 
failures to replicate various prominent research studies (see Pashler & Wagenmakers, 
2012; Yong, 2012; see Chapters 1 and 2). And third, new analyses and studies are 
demonstrating that research in psychology (and other social and behavioral sciences) 
is vulnerable to “p‐hacking,” “data-snooping,” and “HARKing” (hypothesizing after 
the results are known) – a variety of questionable practices designed to obtain statis-
tically significant results (Fanelli & Ioannidis, 2013; Ioannidis, 2012; Ioannidis & 
Trikalinos, 2007; John, Loewenstein, & Prelec, 2012; Kerr, 1998; Simmons, Nelson, 
& Simonsohn, 2011; Vul, Harris, Winkielman, & Pashler, 2009; see Chapter 5).

In fairness, many psychologists contend that the crisis is overstated, or that the 
proposed cures (discussed later) might be worse than the disease. Some argue that 
the obsession with Type I (false positive) errors distracts us from a more serious 
problem of pervasive Type II (false negative) errors (Braver, Thoemmes, & Rosenthal, 
2014; Fiedler, Kutzner, & Krueger, 2012; see Chapter 4). Others are reassured that an 
ambitious “Many Labs” pilot replication project was able to reproduce 10 of 13 
p ublished effects using 36 independent samples (Klein et al., 2014; see Chapter 1). 
And statisticians have offered both frequentist (Sagarin, Ambler, & Lee, 2014) and 
Bayesian (Wagenmakers, 2007; see Chapter  8) perspectives in which disciplined 
data‐snooping is both defensible and reasonable.
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And anyway, is not science ultimately self‐correcting? Given enough research on 
a topic, one might expect biased studies to eventually cancel each other out. But this 
cannot happen when a research community’s biases are homogeneous (MacCoun, 
1998). Indeed, psychologists are fairly homogeneous in many respects  –  their 
training, their demographics (disproportionately European–American), and their 
politics (disproportionately left of center; see Duarte, Crawford, Stern, Jussim, & 
Tetlock, 2015; Gross & Fosse, 2012; Redding, 2012). But while we have difficulty 
seeing our shared biases, they seem more glaring to citizens outside our research 
community, making it easier for them to dismiss our findings (MacCoun & Paletz, 
2009). This is particularly problematic for psychologists working on politically 
charged topics such as gender, race, ethnicity, cognitive ability testing, sexuality, 
 parenting, or moral reasoning.

If psychology is in the midst of a crisis, we take the optimistic perspective that it 
is a healthy opportunity to strengthen the scientific study of mind and behavior. In 
all the sciences, we must constantly be re‐inventing and improving our methods, as 
we learn new ways that we, very human scientists, can fool ourselves, and psychology 
is no different. Indeed, in the history of science, past epistemological crises are often 
seen as vital opportunities that led to improved methods and theories.

In this chapter, we consider the various forms of bias that contribute to the crisis, 
and then examine methods of blind analysis (MacCoun & Perlmutter, 2015) that 
physicists have developed to cope with similar inferential problems, and we sketch 
out various ways in which such methods might be adapted to canonical data analysis 
situations in psychology.

Biases in the Research Process

There are many forms of bias that can distort the selection and interpretation of 
research evidence. Here, we focus on two types of bias  –  confirmation bias and 
d isconfirmation bias.

Confirmation biases occur when the analysis is conducted in a way that favors one 
hypothesis or result over others, irrespective of the actual direction of the evidence 
(see also Chapter 9). The literature on confirmation bias is now quite large, and it 
has developed from many different disciplinary and theoretical streams (e.g., Bruner 
& Potter, 1964; Klayman & Ha, 1987; Lord, Ross, & Lepper, 1979; Mahoney, 1977; 
Nickerson, 1998; Platt, 1964; Rabin & Schrag, 1999; Snyder, 1984; Wason, 1960). In 
fact, the term “confirmation bias” encompasses many distinct variants. They are all 
biases that involve a process that favors one conclusion more than justified by either 
logic or empirical reality. But the varieties of confirmation biases differ with respect to 
modes of inference – whether they involve deduction (logic) vs. induction (evidence); 
and, if inductive, whether they involve evidence gathering vs. evidence interpretation. 
Our chapter will primarily focus on evidence interpretation.

Somewhat confusingly, a particularly important form of confirmation bias is 
known as disconfirmation bias (Ditto & Lopez, 1992; Edwards & Smith, 1996). 
Despite the name, this is not the opposite of confirmation bias; it is simply an 



 Blind Analysis as a Correction for Confirmatory Bias 299

asymmetric bias against one conclusion rather than (or in addition to) a bias in 
favor of a different conclusion. Thus, congenial or expected results are scrutinized 
in a lax manner, but facts that run counter to one’s preferences or expectations are 
s crutinized in a more rigorous fashion.

Disconfirmation bias is hardly unique to psychology; the phenomenon is very 
familiar to physicists. For example, it probably explains some suspicious patterns in 
historical plots of the estimates of various key physical parameters over time. 
Figure 15.1 shows four such plots. Several features are apparent. First, in all four 
plots, the estimates eventually stabilize on a specific value. Second, the confidence 
intervals shrink over time. Both of these features match what one would hope to see 
in a successfully cumulative science. However, a closer inspection suggests that 
something is amiss. The new estimates tend to be strongly tethered to the running 
average of recent estimates in the past. This “serial autocorrelation” is obviously 
unrelated to any actual changes in the physical constants. Rather, it suggests that 
most of the estimates are influenced by previous studies. One might expect some 
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temporal overlap due to common instrumentation and methods, but that cannot be 
the whole story here. Note that these are “one‐sigma” error bars, implying a 68% 
confidence interval (rather than the 95% confidence intervals that are conventional 
in psychology). If valid, any one of these confidence intervals would lead one to 
expect that almost a third of future estimates would fall outside the confidence 
region. Instead, successive estimates almost completely overlap.2 Indeed, these time 
series look strikingly similar to what is seen in experimental demonstrations of the 
intergenerational transmission of arbitrary cultural norms (Jacobs & Campbell, 
1961; Kashima, 2014).

Feynman (1985, p. 342) offers an account of why scientists took so long to correct 
the first reported estimate of the electron’s charge:

It’s a thing that scientists are ashamed of  –  this history  –  because it’s apparent that 
p eople did things like this: When they got a number that was too high above Millikan’s, 
they thought something must be wrong – and they would look for and find a reason 
why something might be wrong. When they got a number close to Millikan’s value they 
didn’t look so hard. And so they eliminated the numbers that were too far off, and did 
other things like that.

A related but conceptually distinct family of biases involve our susceptibility to be 
“fooled by randomness” (Taleb, 2001). Psychologists are familiar with this family 
under the pejorative labels “capitalization on chance” (Humphreys, Ilgen, McGrath, 
& Montanelli, 1969), “fishing expeditions” (Payne, 1974), and “data dredging” 
(Tukey, 1991) (see also Chapter 5).

For example, discoveries in particle physics often take the form of a histogram 
showing a peak – a large number of observations occurring at a particular point on a 
spectrum. Such inferences run the risk of capitalizing on fluctuations that are likely to 
appear somewhere in the data solely by chance. Physicists sometimes refer to a “look 
elsewhere effect” (Lyons, 2008), in which the investigator fails to properly discount for 
the number of possibilities examined when searching for an anomalous fluctuation: 
for example, if a particular location for a peak in a spectrum is not specified ahead of 
time, then any of the (perhaps thousand) bins in the spectrum might reveal a peak.

It can be difficult to completely distinguish confirmation biases from biases 
involving capitalization on chance, but one difference involves their time course. In 
confirmation bias, one conclusion is favored at the outset, whereas in capitalization 
on chance, an attractive conclusion seems to emerge from inspection of the data.

The variety of research biases can be classified with respect to motivation (does 
the investigator want this result?), intention (does the investigator intend to be 
biased?), and normative justification (is there an epistemological stance that justifies 
the bias?), suggesting five bias prototypes (MacCoun, 1998). Fraud is motivated, 
intentional, and normatively proscribed under any model of truth seeking. Advocacy 
involves intentional bias (selective emphasis on congenial evidence), but can be nor-
matively defensible in some contexts (particularly when all parties understand that 
one is operating as an advocate). Skeptical processing occurs when one uses 
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unbiased methods to assess the diagnosticity of the evidence (the Bayesian likelihood 
ratio), but either integrates them with a very low prior probability estimate, or 
applies a very stringent standard of proof. An example might be an editor’s scrutiny 
of an article purporting to support an extravagant claim such as extrasensory 
p erception or extraterrestrial contact.3 Hot biases are unintentional but motivated; 
the evaluator wants and hopes to support a particular result. Cold biases are neither 
motivated nor intentional; they occur when we use faulty sampling or procedures 
that skew the results – possibly against our preferred result.

Note that confirmatory biases can vary from cold to hot. “Cold” confirmatory 
biases occur when we unwittingly use an inferential procedure skewed to favor a 
particular conclusion. The classic example is “positive test strategy” (Klayman & Ha, 
1987), which disproportionately focuses on evidence consistent with a hypothesis 
(call it the H1+ cell), to the neglect of evidence inconsistent with the hypothesis 
(the H1– cell), evidence consistent with the alternative hypothesis (the H0+ cell), or 
evidence inconsistent with the alternative hypothesis (the H0– cell). There are situ-
ations in which the positive test strategy is normatively defensible or efficient 
(Klayman & Ha, 1987; Navarro & Perfors, 2011), but people clearly use it in situa-
tions in which it is likely to produce errors (e.g., Snyder, 1984). Cold confirmation 
biases are surely common in scientific practice. “Discoveries” are often notable pre-
cisely because the investigator shows that the H1+ cell is not empty  –  that the 
phenomenon of interest actually exists. Only later do researchers begin to flesh out 
its frequency and the necessary and/or sufficient conditions for its existence. And the 
pervasive lack of statistical power in social science studies shows that scientists 
r outinely deploy methods biased against the hypothesis they are interested in 
(see Braver et al., 2014; Cohen, 1988) – although this bias is offset by others in the 
opposite direction (Ioannidis & Trikalinos, 2007; Simmons et al., 2011).

“Hot” confirmation biases occur when we prefer one conclusion over other 
p ossible candidates, even when we have no intention to be biased. This “motivated 
cognition” (Kunda, 1990) can take different forms, depending on the extent to which 
we are motivated to approach one conclusion vs. avoiding another one, and the 
extent to which we feel compelled to settle on a conclusion at all (Kruglanski & 
Webster, 1996). The stereotypic image of the scientist as a cool, dispassionate, 
objective technician is belied by countless scientific biographies and tales of scientific 
discovery – most famously Watson’s (1968) The Double Helix. Still, it is important to 
distinguish these hot biases from outright fraud. Kunda (1990) reviewed evidence 
that motivated cognition is perhaps better characterized as “warm” because people 
are rarely completely impervious to or rejecting of uncongenial facts.

Fishing expeditions (a form of capitalization on chance) also range from cold to hot. 
Many ephemeral “discoveries” of the dustbowl empiricist era of early factor analysis 
were made by investigators operating in good faith who had not yet recognized the 
conceptual risks inherent in large sets of pairwise significance tests.4 But where confir-
mation biases often involve a “need for specific closure” (a need for one particular 
answer), capitalization on chance often involves a “need for non‐specific closure” – a 
desire to find something interesting, whatever it may be (Kruglanski & Webster, 1996). 
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In either case, the motivations can involve a mix of theoretical and professional con-
siderations. Sometimes we prefer a result because we favor a theory that predicts it; 
sometimes we prefer a result because we think we can publish it or get the New York 
Times to report it. The motives need not be selfish or nefarious; we often simply want 
to help our graduate students find something interesting that they can present at a 
conference.

Corrective Practices in Psychology

There are a variety of traditional practices intended to minimize confirmation biases 
(see review and bibliography in MacCoun, 1998). Indeed, textbooks on research 
methodology and statistical analysis are primarily concerned with the reduction of 
bias, especially confirmation bias. (Reducing noise and increasing generalizability 
are other key goals.) Replication, peer review, and meta‐analysis are essential tools 
in the debiasing toolbox, but, as discussed at the outset, they are clearly insufficient, 
and they arguably perform far less well than conventionally assumed.

There are less conventional practices and proposals. In Platt’s (1964) “strong 
i nference” scheme, the investigator tests the fit of data to each of many competing 
hypotheses, rather than testing for the support of any single candidate. New Bayesian 
methods provide a disciplined way that this might be implemented (e.g., 
Wagenmakers, 2007). The “destructive hypothesis testing” approach (Anderson & 
Anderson, 1996) requires the investigator to apply disconfirmation bias to one’s 
preferred hypothesis, vigorously attempting to either falsify it or establish its 
boundary conditions. These approaches seem easy to implement, and, to some 
extent, each is already part of good scientific training.

More controversially, in Kahneman’s (e.g., Kahneman & Klein, 2009) “adversarial 
collaboration” method, advocates for competing hypotheses collaborate in the 
design and conduct of a study, and then each participates in the analysis and inter-
pretation. There are successful examples (e.g., Kahneman & Klein, 2009) but also 
some unpleasant failures to collaborate (Jost et al., 2009). Proposals to institution-
alize routine replicability testing across labs (see Nosek, 2014; see also Chapter 1) 
have met the “proof‐of‐concept” test (Klein et al., 2014), but conducting fair and 
accurate replications is quite expensive in terms of labor costs, opportunity costs, 
and political costs.

Finally, there are proposals to institutionalize complete transparency via public 
registries of materials, data, and planned analyses and hypothesis tests (Miguel 
et al., 2014; Nosek, 2014; see also Chapter 5). Although registration of datasets is 
becoming routine in many fields, the proposal to register hypothesis tests in advance 
of data collection is somewhat problematic. First, as with institutionalized replica-
tion, registries pose labor costs and opportunity costs, especially for junior 
researchers who are already understaffed, underfunded, and overburdened in 
meeting the daunting publication standards of contemporary tenure review. 
Second, it is not inconceivable that “hypothesis trolls” could flood registries with 
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proposals as a low‐cost means of discouraging others from researching those topics, 
similar to web domain squatters and so‐called “patent trolls.” But third, and more 
subtly, we see some risk that pre-registered analysis undermines some of the fun 
and excitement and openness to discovery that motivate scientific careers and leads 
to genuinely new insights.

Ideally, our corrective procedures should serve two different goals:

1 Discourage biased evidence search and evidence assessment
2 Encourage active problem‐solving and discovery

This first goal is at the heart of the procedures we have discussed so far. It places a 
priority on the scientific values of honesty, objectivity, and rigor. Feynman (1985, 
p. 341) described “… a kind of scientific integrity, a principle of scientific thought 
that corresponds to a kind of utter honesty  –  a kind of leaning over backwards. 
For example, if you’re doing an experiment, you should report everything that you 
think might make it invalid – not only what you think is right about it: other causes 
that could possibly explain your results; and things you thought of that you’ve 
eliminated by some other experiment, and how they worked  –  to make sure the 
other fellow can tell they have been eliminated.”

Psychologically, the first goal is prevention‐focused, oriented toward avoiding 
p roscribed behaviors and bad decisions (Higgins, 1998). This kind of orientation 
piggybacks on our proclivity for “cheater detection” (Cosmides, 1989).

But it is important to preserve the second, more promotion‐focused (Higgins, 
1998) goal of exploration and discovery. According to John Tukey, one of the 
f oremost statisticians of the twentieth century:

Data analysis needs to be both exploratory and confirmatory. In exploratory data anal-
ysis, there can be no substitute for flexibility, for adapting what is calculated – and, we 
hope, plotted  –  both to the needs of the situation and the clues that the data have 
already provided. In this mode, data analysis is detective work  –  almost an ideal 
example of seeking what might be relevant. (Tukey, 1969, p. 90)

In the remainder of this chapter, we discuss the blind analysis family of methods 
increasingly used by physicists to counteract confirmation bias. We think these 
approaches, adapted to the distinctive needs of psychological science, can help to 
serve both epistemic goals.

Blind Analysis in Physics

We introduce this examination of methods in physics not because we want to 
encourage “physics envy,” or because physics is “the queen of the sciences.” Rather, 
we discuss physics because physicists have explored a family of methods called blind 
analysis, methods that seem potentially useful for psychological research, if suitably 
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adapted to the very different instrumentation and subject matter. Though far from 
universal, blind analysis methods are increasingly common in physics, especially 
particle physics and cosmology. Klein and Roodman (2005) provide a clear and 
authoritative review.

Blind analysis was apparently introduced into physics by Luis Alvarez, in research 
attempting to identify quarks. According to Lyons (2008, p. 907):

A potential problem was that large corrections had to be applied to the raw data in 
order to extract the final result for the charge. The suspicion was that maybe the 
e xperimenters were (subconsciously) applying corrections until the value turned out 
to be “satisfactory.”

To circumvent this problem, Alvarez and colleagues added random numbers to 
their raw estimates before analysis. This noise was only removed after the experi-
mentalists were confident that they had made all appropriate corrections to the 
data. In this case, blinding prevented the researchers from publishing what was 
probably a spurious “discovery” of quarks where none were actually detected 
(Lyons, 2008).

Klein and Roodman (2005, p. 147) defined blind analysis as “a method that hides 
some aspect of the data or result to prevent experimenter’s bias. There is no single 
blind analysis technique, nor is each technique appropriate for all measurements. 
Instead, the blind analysis method must carefully match the experiment, both to 
prevent experimenter’s bias and to allow the measurement to be made unimpeded 
by the method.” They described a wide array of blinding techniques, depending on 
what is being hidden (the signal being measured, the result of an analysis, the 
number of target events that have occurred), and how it is being hidden (through 
removal, through perturbation with noise, through a biasing offset).

According to Klein and Roodman (2005, p. 148), “it is crucial that the blind anal-
ysis technique be designed as simply and narrowly as possible. A good method, 
appropriately used, minimizes delays or difficulties in the data analysis.” They cau-
tion that “[b]lind analyses solve only one problem, the influence of experimenter’s 
bias on the measurement.”

It is important to describe what blind analysis is not. It is similar in spirit and in 
logic to single‐ and double‐blind methods used in clinical trials (see Schulz & 
Grimes, 2002; Stolberg, 2008), forensic science (Saks & Koehler, 2005), and even 
orchestra auditions (to reduce gender and race discrimination; Goldin & Rouse, 
2000). But those methods tend to conduct blinding during data collection; blind 
analysis, as the name implies, applies blinding to the data analysis process. Obviously, 
the two approaches are complementary rather than mutually exclusive. 
Mathematically, it is perhaps closer to a literature addressing an entirely different 
problem – computer science work on methods to protect data confidentiality (see 
Fung, Wang, Chen, & Yu, 2010; Sweeney, 2002). But the goal there is to enable the 
analyst to conduct conventional analyses while protecting identifying information, 
so the “blind” is not intended to be lifted.
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A case study

To illustrate blind analysis, we will sketch out how it was used in a paper by the 
s econd author and his colleagues in the Supernova Cosmology Project (SCP; Conley 
et al., 2006). By examining the brightness and spectra of high‐redshift Type Ia super-
novae, a series of papers by the SCP and the competing High‐z Supernova Search 
Team determined that the well‐known expansion of the universe is actually acceler-
ating. This result is consistent with Einstein’s formerly discredited cosmological 
constant, and implies the existence of “dark energy.” As Conley et al. (2006, p. 1) 
noted, “the implications of this result for the future fate of the universe and 
our understanding of fundamental physics are profound; therefore it is extremely 
important that it be verified by independent methods.”

One such method, deployed by Conley et al. (2006), involves measurements of a 
specific brightness metric in color‐magnitude diagrams of Type Ia supernovae. 
Although the details are complex, the data analysis requires the researchers to select a 
variety of “cuts” with respect to data quality (e.g., the maximum allowable error asso-
ciated with various measured parameters) and analysis (e.g., minimum and maximum 
redshift cutoffs). These analytic decisions create a potential for c onfirmation bias.

To reduce this risk, the SCP team employed a blind‐analysis method suitable for 
their task (Conley et al., 2006, pp. 10–11). Their study sought estimates of two key 
quantities: ΩM, an index of the density of matter, and ΩΛ, an index of the density of 
dark energy (for this study assumed to have the properties of Einstein’s cosmological 
constant). It is difficult to exaggerate the profundity of what these quantities tell us. 
According to our best cosmological understanding, whether the universe will 
expand forever or eventually collapse (“the Big Crunch”) depends on the balance of 
these quantities. Thus, to minimize the likelihood of choosing data cuts that would 
produce a particular verdict, the SCP team applied offset values to their measure-
ments, and these offset values were kept hidden from the analysis team until they 
judged that the analysis was complete. Thus, the team literally did not know what 
their findings implied until the blind was lifted. As seen in Figure 15.2, the resulting 
analysis confirmed earlier results, supporting the continued and accelerating expan-
sion scenario, as well as the existence of “dark energy.” Though the details are beyond 
the scope of this chapter, it is worth noting that the particular method of blinding 
that was used allowed the authors to successfully conduct almost all necessary 
“debugging” tests. This is the goal of a well‐designed blind, but whether it can be 
fully achieved will depend on the specific measuring procedures, instruments, and 
analyses required for the study.

Applying Blind Analysis to Psychology

There is a long tradition of psychologists looking to physics for inspiration or as 
a  benchmark for assessing psychology’s progress as a science (e.g., Furr, 2002; 
Hedges, 1987; Lewin, 1931). But there are important differences between the disciplines. 
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For example, physics generally has far greater measurement precision. And physics 
generally has strong formal theories that make precise quantitative predictions, so 
that an investigation’s primary goal is often point estimation (rather than causal 
identification; see Meehl, 1967). Fanelli (2010) examined the frequency of rejections 
of the null hypothesis (a possible indication of publication bias) for 20 disciplines, 
finding that space science had the lowest rate (70.2%) and psychology/psychiatry 
had the highest rate (91.5%). Even so, it is clear that confirmation bias is a concern 
in both the social sciences and the natural sciences.

Psychology is an extremely heterogeneous field, both in its topics and in its 
methods. But in a recent content analysis of 155 studies in Personality and Social 
Psychology Bulletin (Kashy, Donnellan, Ackerman, & Russell, 2009), 52% reported 
an ANOVA or t‐test, and 41% reported multiple regression techniques (including 
factor analysis, path analysis, and structural equation modeling). Thus, we will 
briefly sketch out a simulated example using ANOVA, followed by a more cursory 
discussion of possible blind methods for factor‐analytic and path‐analytic 
approaches.

CMAGIC primary fit

No big bang

Expands forever
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68.3%, 95.4%, 99.7%
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Figure 15.2 Results of Conley et al. (2006, Figure 6). Grey contours represent the 68.3%, 
95.4%, and 99.7% confidence regions.
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An illustrative example

Consider the following situation, which is hypothetical, but not unlike many exper-
iments in social psychology. (Any resemblance to specific studies in the literature is 
unintentional.) A psychologist is interested in the interactive effects of a source’s 
expertise and conflict of interest on persuasion. An experiment is designed to 
examine the persuasiveness of an advertisement urging people to vote for a 
Massachusetts wetlands protection ballot initiative. The researcher conducts a 2 × 2 
factorial experiment, with a complete crossing of two independent variables:

 ● Source expertise: 1 = low (source has a BA in biology from Harvard) vs. 2 = high 
(source is a Harvard PhD and a Harvard professor of biology)

 ● Conflict of interest: 1 = none vs. 2 = Harvard will get new wetlands science center 
if initiative passes

In our initial simulation, we randomly sampled 50 cases each from normal 
distributions with a standard deviation of 1 and cell means of 3 (low expert, no 
conflict), 3 (low expert, conflict), 4.5 (high expert, no conflict), and 2.5 (high expert, 
conflict) – consistent with the investigator’s prediction that a conflict of interest will 
undermine the source’s credibility, but only if the source is a Harvard professor 
rather than a Harvard alumnus.

A few comments are in order. First, assuming the study used seven‐point Likert‐
type items, notice that our Monte Carlo procedure will produce some scores outside 
the 1–7 range. These can represent the types of rating and recording errors that 
occur in actual experiments. Second, note that the investigator has confounded 
expertise (BA vs. PhD) with current affiliation (alumnus vs. professor). This illus-
trates the kind of conceptual problems (e.g., construct validity) that data blinding is 
unlikely to correct. Finally, our investigator is to be commended for choosing a cell 
sample size of 50, making this better powered than the typical psychology experiment. 
(The Appendix also examines a case involving noisier data.)

In the Appendix, we compare means and F statistics for a number of different 
ways in which these data might be blinded. Here, we choose one we find particularly 
promising, which we call cell scrambling (MacCoun & Perlmutter, 2015).

In this method, the data for each of the four cells of the design are kept together, 
but the identities of the four cells are scrambled at random. For our four‐cell 
design, there are 4! = 24 possible orderings of the cells. Rather than sampling one 
such ordering, imagine that the investigator is given a set of, say, six of them. (Our 
intuition here is that there may be a cognitive sweet spot between providing only 
a single permutation and providing all 24; six seems like just enough to encourage 
hard thinking about the data.) Note that the true raw data have a chance (in this 
case, a one‐in‐four chance) of appearing in the ensemble of cell‐scrambled data-
sets. By coincidence, in this run, the very first scrambled set is, in fact, the true 
data set, though of course the investigator should not know that until the blind 
is lifted.
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As described in the Appendix, cell scrambling preserves the three F statistics, so 
the investigator will know whether there are significant effects, and how many. 
But he or she will not know which effects are significant, nor the patterns that the 
means actually take.

How might our clever and highly motivated investigator react to the ensemble of 
scrambled sets in Figure 15.3? In this ensemble, Sets 1 and 2 are likely to be very 
appealing; both support the same qualitative pattern that was predicted. Sets 3 and 4 
are likely to appear tolerable, because each shows that experts are more persuasive 
and that conflicts reduce persuasion, but neither shows a particularly interesting 
interaction effect. Set 5 is quite different from the predictions, suggesting – counter-
intuitively – that professors become more persuasive when they have a conflict of 
interest. Yet, after contemplating that pattern, it might occur to the investigator that 
what was intended to be a “conflict of interest” (a bad thing) might actually be seen 
as the professor’s “skin‐in‐the‐game” level of engagement in the state’s ecological 
health (a good thing). Of the six, only the final set (in this run) is sufficiently implau-
sible on its face that the investigator will probably dismiss it as a decoy. In principle, 
and perhaps even in practice, an investigator should be able to write up all six 
v ersions of the paper before the unblinding occurs.

One reason we find cell scrambling appealing is that it is so similar in spirit to 
one  of the few consistently successful methods of “debiasing” many judgmental 
processes  –  the “consider the opposite” strategy, in which people are encouraged 
to systematically consider the opposite of whatever conclusion they are inclined to 
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reach (Lord, Lepper, & Preston, 1984). A drawback of cell scrambling, used alone, is 
that, while it does not reveal the nature of any significant result, it does show the 
investigator whether there is at least one significant result, and, as such, may fail to 
discourage some p‐hacking practices. In the Appendix, we show that other methods 
blind the p‐values but do a poorer job of blinding the substantive pattern of results. 
A hybrid approach might be to combine cell‐scrambling with a method that p erturbs 
the test statistics, although this might not obscure the likely significance of very 
large mean differences.

Blind analysis of correlational data

Much of empirical psychology is correlational; strictly speaking, experiments 
are correlational, but we use the term in its conventional sense of “non‐experi-
mental correlations” – that is, correlational statistics estimated in the absence of 
random assignment or strict experimental controls. Putting aside the serious 
problems of causal identification when interpreting non‐experimental correla-
tions, here our concern is with a different problem: the enormous risks of capi-
talization on chance in data sets that permit dozens or even hundreds of pairwise 
correlations to be estimated. This is a special concern in educational testing, 
n euroimaging (see Vul et al., 2009), and the so‐called “big data” science (Marcus & 
Davis, 2014).

Analysts using multiple regression need to make many decisions about model 
specification: What covariates should I include? Should I transform any of the vari-
ables? Which regression approach (i.e., link function) should I use  –  ordinary least 
squares? Logit? A multilevel model? If the analysis includes multiple locations and/or 
time periods, there are additional choices to make: Clustered standard errors? Fixed 
or random effects? What start year? What end year?

Even in experimental psychology, correlational analyses play an important 
role. For example, many studies use some form of factor analysis to build a 
measurement model. Researchers want to know: Do the data load on a single 
factor? Do the data fit my theory about measurement? Which items do I keep, and 
which should I throw out?

And experimentalists often use some form of path analysis or structural equation 
modeling to ask: Is the relationship between the manipulated variable (e.g., candidate 
name) and the measured dependent variable (e.g., voting) mediated by some hypothe-
sized intervening variable (e.g., sexism or racism)?

Although we do not develop them here, we can imagine many plausible ways 
of suitably blinding data for regression analysis, factor analysis, and path 
analysis.

One could apply noise, bias, or both to the individual data points (as in our 
methods 1, 2, 3, and 4) in the preceding text. Or one could apply noise + bias to the 
coefficients in the covariance matrix. Or one would simply scramble the identity of 
the items – that is, “coefficient‐scrambling” rather than cell scrambling.
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Discussion

How should blind analysis be implemented?

There are many procedural issues to consider. First, there are multiple ways to blind 
the data, and different methods will be appropriate for different situations. Choosing 
a blinding method requires some creativity, but making an informed choice will 
require serious mathematical analysis, Monte Carlo simulations, and empirical 
t esting – well beyond any analyses offered here.

Second, once a blinding method has been selected, who should apply (and later 
undo) the blinding algorithm? A member of the team, or a neutral third party? 
When should the blind be lifted? Who enforces against peeking? Contemporary 
empirical physics often involves “big science.” Physics data are sometimes sparse 
and difficult to obtain, requiring very large interdisciplinary teams. Psychology 
papers often have either a single author or a very small team (often consisting of 
one professor and his or her students). In theory, one might expect that the larger 
the team, the more likely that team members will object to any effort to cheat the 
blinding procedure (see Faia, 2000). But confirmation biases are often unconscious, 
and groups often amplify rather than attenuate shared biases (Kerr, MacCoun, & 
Kramer, 1996).

Third, are post‐blind analyses permissible? According to Lyons (2008, p. 909): 
“A  question that arises with blind analyses is whether it should be permitted to 
modify the analysis after the data had been unblinded. It is generally agreed that this 
should not be done … unless everyone would regard it as ridiculous not to do so.” 
Conley et al. (2006, p. 10) pointed out that blind analysis is not mindlessly mechanical:

A critical point is that these techniques do not seek to completely hide all information 
during the analysis. In fact, the goal is to hide as little information as possible while still 
acting against experimenter bias. Human judgment and scientific experience continue 
to play a critical role in a blind analysis. One does not mechanically carry out the steps 
of the analysis and then publish the results.

In some cases, an examination of the actual results may enable the team to recognize 
an overlooked error. Imagine, for example, finding out that unblinded data show 
that high school dropouts outperform college graduates in math problems; the 
implausibility of the result might help one discover that education levels were 
m iscoded. But the important thing is to acknowledge any post‐blind analyses and 
distinguish them from blind analyses in the write‐up  –  much in the same way 
that  psychologists are taught to report post‐hoc tests separately from their main 
h ypothesis tests.

Finally, is blind analysis voluntary, or should it be compulsory, and if so, who 
should be the enforcing agency? The university? The funding agency? A journal? 
Interestingly, in several areas of physics, blind analysis has emerged as a norm, and 
it is mostly self‐enforced on research teams. As such, it has become an important 
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part of the socialization process; indeed, graduate students are often the most 
z ealous about enforcing and protecting the blinding.

Should blind analysis be implemented?

These implementation questions are daunting but manageable. But readers might 
ask whether blind analysis is even worth the trouble.

Certainly, blind analysis is no panacea. According to Conley et al. (2006, p. 10):

All that a blind analysis does is prevent unconscious misuse of particular types of 
information during the analysis process. The kind of data that are excluded from 
consideration (namely, the final answer derived from each option under consideration) 
is invariably that which no reasonable scientist would allow to consciously influence 
his or her decision‐making process. However, subconscious effects are still present, 
and this is what this approach helps prevent.

In their survey of professional psychological researchers, John et al. (2012) asked 
about ten different “questionable research practices” (QRPs). The responses suggest 
that, contrary to what Conley et al. assume, many psychologists do let questionable 
considerations “consciously influence” their decision making.

We believe that a proper data blinding protocol, implemented honestly, would reduce 
or constrain three of these QRPs (all quoted bullet points are from John et al., 2012):

 ● Deciding whether to collect more data after looking to see whether the results 
were significant (58% self‐admission rate under an incentivized honesty 
condition)

 ● Stopping collecting data earlier than planned because one found the result that 
one had been looking for (22.5%)

 ● Deciding whether to exclude data after looking at the impact of doing so on the 
results (43.4%)

But blind analysis, by itself, is no panacea. The three examples seem to involve direct 
confirmation bias, where blind analysis is most likely to be effective.

Four other QRPs involve capitalization on chance:

 ● In a paper, selectively reporting studies that “worked” (50%)
 ● In a paper, failing to report all of a study’s dependent measures (66.5%)
 ● In a paper, failing to report all of a study’s conditions (27.4%)
 ● In a paper, reporting an unexpected finding as having been predicted from the 

start (35%)

Blind analysis, by itself, is unlikely to prevent capitalization on chance, at least not 
in any mechanical way, but we believe the self‐conscious cautiousness it produces 
reduces the likelihood of such practices.
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But of course, blind analysis is unlikely to deter more blatantly fraudulent 
p ractices, such as:

 ● In a paper, “rounding off ” a p-value (e.g., reporting that a p value of 0.054 is less 
than 0.05) (23.3%)

 ● In a paper, claiming that results are unaffected by demographic variables 
(e.g., gender) when one is actually unsure (or knows that they do) (4.5%)

Blind analysis is also unable to correct unreliable or invalid measurements, 
d isentangle any confounded variables, improve causal identification of correlational 
evidence, or make a study more interesting or insightful. But blind analysis is just a 
valuable tool; it is not the whole toolbox.

Some Bayesians may feel that blind analysis is a “Band‐Aid” solution where major 
surgery – abandoning null‐hypothesis testing – is required (see Wagenmakers, 2007; 
see Chapter 8). Although Bayesian methods avoid some of the worst forms of 
p‐hacking, Simmons et al. (2011, p. 1365) cautioned that “[a]lthough the Bayesian 
approach has many virtues, it actually increases researcher degrees of freedom. First, 
it offers a new set of analyses (in addition to all frequentist ones) that authors could 
flexibly try out on their data. Second, Bayesian statistics require making additional 
judgments (e.g., the prior distribution) on a case‐by‐case basis, providing yet more 
researcher degrees of freedom.”

What do we want from blind analysis?

Although it is no panacea, blind analysis does offer certain strengths that replication 
studies and pre‐registration do not. Unblinded replication studies run a risk of 
simply replicating shared biases (or introducing a new contrarian bias against the 
original findings). And, unlike pre‐registration, blind analysis allows for an open‐
minded, exploratory frame of discovery. It motivates researchers to find all the 
errors, biases, and rival hypotheses in their study – not just the ones they do not like.

At its best, blind analysis is more than just an algorithm for data processing; it pro-
vides a disciplined habit of mind. As Feynman (1985, pp. 342–343) argued, “this long 
history of learning how to not fool ourselves – of having utter scientific integrity – is, 
I’m sorry to say, something that we haven’t specifically included in any particular 
course that I know of. We just hope you’ve caught on by osmosis. The first principle is 
that you must not fool yourself – and you are the easiest person to fool” (see Chapter 9).

Appendix

There are many possible ways of blinding data, and different methods will be appro-
priate in different analytic situations, depending on the measurement and statistical 
properties of the data, the procedure by which they were obtained, the types of 
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experimental manipulations and controls that were deployed, and so on. In this 
Appendix, we compare cell scrambling (described in the preceding text) with four 
other potential methods of blinding data from the hypothetical 2 × 2 psychology 
experiment we describe in the main text – first in a simulation of a well‐powered 
experiment (i.e., adequate sample size), and then in a simulation of a weakly pow-
ered experiment. We show that different blinding methods have different strengths 
and weaknesses with respect to correcting errors and discouraging biases. For 
example, some methods are more effective at blinding the substantive results (the 
cell means), while others are more effective at blinding the statistical significance of 
the results (the p‐values). But investigators do not necessarily have to confront 
this  tradeoff, because it is possible to combine two or more approaches. Our list 
of approaches is not exhaustive, and we hope others will explore and test additional 
methods of data blinding, tailored to the specific features of other research 
situations.

A 2 × 2 Factorial with moderate effects and good power

In Table 15.1, we show the F statistics for the Expert and Conflict main effects and 
the Expert × Conflict interaction for a single run of the simulation that is described 
in the main text; the raw means are plotted in the left panel of Figure 15.4. For pre-
sent purposes, we limit ourselves to this single illustrative run and do not consider 
asymptotic properties or sensitivity analyses of the various parameters of the 
s imulation. The first row shows the F statistics for the “raw data”  –  what the 
investigator would see if the data were unblinded. In this case, the three effects 
c orrespond to effect sizes of η2 = 0.05, 0.19, and 0.16, where η2 = 0.01, 0.06, and 0.14 
are considered the benchmarks for “small,” “medium,” and “large” effects, respectively 
(Cohen, 1988).

Table 15.1 Simulation 1: F Statistics.*

Expert Conflict Expert × Conflict

Raw data 14.6 *** 60.8 *** 51.4 ***
Raw + noise 0.1 16 *** 7.5 **
Raw + cell bias 153.5 *** 321.5 *** 142 ***
Raw + noise + cell bias 13.3 *** 0 10.3 **
Row scrambling 0.2 0.4 0.2
Cell scrambling
Set 1 14.6 *** 60.8 *** 51.4 ***
Set 2 14.6 *** 51.4 *** 60.8 ***
Set 3 60.8 *** 51.4 *** 14.6 ***
Set 4 51.4 *** 60.8 *** 14.6 ***
Set 5 60.8 *** 14.6 *** 51.4 ***
Set 6 14.6 *** 51.4 *** 60.8 ***

* Each effect has 1 degree of freedom, and the error term has 196 degrees of freedom.
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The remaining rows show the F statistics for these same raw data after various 
blinding methods have been used to transform the data.

Before presenting our blinding methods, what might we want blind analysis to 
achieve here? For a 2 × 2 experiment, we want to minimize biases in any of the 
following:

1 Data deletion
2 Data correction
3 Data transformation
4 Significance testing (crossing the p < 0.05 threshold)

Blinding method 1. Add noise. In our first blinding method, we perturb the raw data 
by averaging each of the 200 data points together with one of 200 random numbers 
sampled from a uniform (minimum = 1, maximum = 7) distribution: viz., blindi = 
average(rawi , noisei ). As seen in Table 15.1 and the right panel of Figure 15.4, this 
has the regressive effect of weakening all the effects. Despite the fact that the random 
numbers were sampled uniformly from the full‐scale range (1–7), the perturbed 
data are qualitatively similar (and the ordinal rankings are identical) to the raw data, 
at least for this scenario involving a strong “true” effect pattern. As such, in this case, 
this blinding method could actually backfire  –  encouraging the investigator to 
engage in more strenuous p‐hacking to obtain statistical significance and/or 
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strengthen the apparent effects. Adding noise is likely to be more effective as a blind 
when the measurement scale is less tightly bound than our narrow Likert‐type scale 
(e.g., kilograms or miles or dollars).

Blinding method 2: Add cell bias. For our second blinding method, we perturb each 
of the 200 data points by averaging them together with the appropriate one of four 
cell‐specific bias terms, each of which was sampled from a normal distribution with 
the same grand mean and SD as the full raw data distribution. As seen in Table 15.1, 
this produced significant main effects and a significant interaction – discouraging 
the temptation to p‐hack. However, as seen in Figure 15.5, the qualitative pattern of 
means is quite different (e.g., the first cell mean is increased and the third cell mean 
is decreased by the blinding), so there is little reason to selectively edit the data.

Blinding method 3: Add noise + bias. Our third method simply combines the first 
two; we take the same vector of random numbers as method 1 and the same vector 
of bias terms from method 2, and average each of the 200 data points with their 
corresponding noise and bias terms (Figure 15.6).

Blinding method 4: Row scrambling. In our fourth method, we leave the raw out-
come scores intact, but we “re‐randomize” (or “post‐randomize”) the assignment to 
condition, so that the newly assigned cells no longer correspond to the true experi-
mental condition for any given subject except by chance (in this case, a one‐in‐four 
chance). As seen in Table  15.1, as one might expect, row scrambling is strongly 
regressive, all but eliminating any hint of systematic effects in the data. This is the 
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most “blinding” of our methods – it obscures the qualitative pattern of effects while 
at the same time driving the F statistics so close to zero that all but the most e gregious 
p‐hacking is unlikely to be effective (Figure 15.7).

Such extreme blinding serves our “prevention‐focused” motive of discouraging 
research bias. But it works so extremely that seeing the blinded data is little differ-
ent from seeing no data at all, which seems little different in practice from simply 
p re-registering one’s hypotheses and data analysis plans.

But earlier we argued that data analysis serves the “promotion‐focused” goals of 
encouraging creative thinking about one’s study and the possible mechanisms at 
play in respondent cognition and behavior. Is there a way to stimulate such thinking 
while at the same time discouraging researcher bias? Our fifth method attempts to 
fit the bill.

Blinding method 5: Cell scrambling. This is the method we report in the main text. 
Rather than scrambling individual data points, our fifth method keeps each cell’s 
data together, but it scrambles the identities of the four cells of the design. For our 
four‐cell design, there are 4! = 24 possible orderings of the cells. Rather than sam-
pling one such ordering, imagine that the investigator is given a set of, say, six of 
them. (Our intuition here is that there may be a cognitive sweet spot between 
providing only a single permutation and providing all 24; six seems like just enough 
to encourage hard thinking about the data.) Note that the true raw data have a 
chance (in this case, one‐in‐four) of appearing in the ensemble of cell‐scrambled 
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datasets. By coincidence, in this run, the very first scrambled set is in fact the true 
data set, though of course the investigator should not know that until the blind 
is lifted.

As seen in Table 15.1, cell scrambling influences the F statistics, but it does so in a 
different manner than the other methods. Note that all six cell‐scrambled sets have 
the same three F statistics as the original raw data, so the investigator will know 
whether there are significant effects (and how many). But if only some of them are 
significant, the investigator will not know which ones have and have not crossed the 
p < 0.05 threshold.

A 2 × 2 Factorial with weaker effects and low power

In our second simulation, we tested the same blinding algorithms, but this time we 
reduced the cell 3 mean from 4.5 to 4, and we reduced the cell sizes from 50 to 
25  –  which, unfortunately, is closer to typical practice in psychology. As seen in 
Table 15.2, the raw data show no significant effects, though two of the three are very 
close to the p < 0.05 threshold (and prime candidates for p‐hacking).

In this kind of situation, the regressive methods (adding noise and row scram-
bling) have little effect because we are so near the floor already. Cell scrambling 
retains the two marginal effects, but the investigator no longer knows which ones are 
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near threshold. As such, cell scrambling will not fully discourage p‐hacking – though 
it will make it more difficult. But methods 2 and 3 – which perturb the data with 
cell‐specific bias terms – serve to push all three effects well into the significant range. 
In this case, the investigator is now so beyond the significance threshold that there 
is little temptation to p‐hack (Figure 15.8).

Table 15.2 Simulation 2: F Statistics.*

Expert Conflict Expert × Conflict

Raw data 0 3 3.4
Raw + noise 0 3.5 1.8
Raw + cell bias 23.4 *** 59 *** 45.5 ***
Raw + noise + cell bias 7.1 ** 5 * 46.1 ***
Row scrambling 0.3 0 0.3
Cell scrambling
Set 1 0 3.4 3
Set 2 3.4 0 3
Set 3 0 3.4 3
Set 4 3.4 3.4 0
Set 5 3.4 0 3
Set 6 3 0 3.4

* Each effect has 1 df, and the error term has 196 df.
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Endnotes

1 Yong (2012) provides a good overview. In‐depth treatments appear in the symposia in 
Perspectives on Psychological Science on “Replicability in psychological science: A crisis of 
confidence?” (November 2012), “Advancing science” (July 2013), and “Advancing our 
methods and practices” (May 2014).

2 Over the long run, we also see evidence of a different problem: the most recent estimates 
tend to fall well outside many of the previous confidence intervals  –  a clear sign of 
j udgmental overconfidence (see Henrion & Fischhoff, 1986).

3 This is similar to the notion of disconfirmation bias discussed earlier; there is a continuum 
anchored by “principled skepticism” on one end (where considerable prior evidence or 
well‐tested theory argue against accepting a finding) and “motivated skepticism” on the 
other (where one simply does not like a finding).

4 See Einhorn (1972). The classic demonstration, using hypothetical data, is Armstrong 
(1967). Empirical examples are documented in Fabrigar, Wegener, MacCallum, and 
S trahan (1999) and MacCallum, Roznowski, and Necowitz (1999).
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