### A Method for Assessing the Strength and Value of a Set of Patents

#### **Zhen Lei and Brian Wright**

**Department of Agricultural and Resource Economics** 

**UC Berkeley** 

Berkeley Center for Law and Technology February 6, 2007

# Context

 Part of a larger study with Lei Zhen addressing:

Predictability of patent grants
International harmonization
Examiner behavior
Rational ignorance

# Problem

- In a world of proliferating patent portfolios, it is desirable to distinguish in a large portfolio patents that are:
- 1)Strong

2)Valuable

# Problem

- Detailed analysis of each patent to confirm that it is both strong and valuable is expensive
- A procedure that can economically distinguish patents that are significantly more likely to be strong and valuable could be very useful part of the evaluation toolkit

# **Our Goal**

- A procedure that can identify a set of patents that are with significant probability
  - 1. stronger than others
  - 2. higher-value than others

# Weak Patents

- Can my legal colleagues help with the definition?
- Here (provisionally):
  - Patents that should have not been issued in light of all prior art

## Working Definition 1: Weak Patents

Patent weakness

Probability of being held as invalid

in a perfect re-examination or in an ideal court trial

 Courts' invalidity decisions: Non-novelty/ and nonobviousness dominates

Allison & Lemley (1998): 191 court cases finding invalidity

80: non-novelty58: obviousness45: enablement, written description, claim indefiniteness, best mode

# Working Definition 2: <u>Low-Value Patents</u>

- Patents that:
- 1) remain valid eight years after grant, but

- 2) are not renewed in the United States 8 years post-grant
  - Misclassifies patents if they have generated high value initially, but the value is almost fully spent by the eighth year.



**US examiners:** 

can distinguish strong from weak applications

devote more search effort to the weak

→ A higher share of missed prior art means a stronger patent



### <u>Assume:</u>

examiner can distinguish relative patentability:

Bears burden of proof of non-patentability

Wants to disposes of applications quickly

Undergoes checks on his performance

**Targets applications deemed less patentable** 

Dedicates more effort to these "weak" applications in search for prior art

How do we know which granted patents are stronger? Empirical Study:

Use independent (noisy?) signal of a strength of US patent

Exploit availability of international patenting data

Data:

22420 US patents with priority years 1990-1995

US patents with related applications filed at EPO One single USPTO application One single EPO application EPO application outcomes

## How do we know which granted patents are stronger?

Key Variable:

## Share of prior art missed by examiner:

Missed Prior Missed Prior + Examiner Citations

### Measure of Examiner's Search Effort:

- Share of missed prior art  $=\frac{\text{Missed prior patents}}{\text{Missed prior patents} + \text{citations}}$
- Missed prior patents?:

Impossible to literally find for a large set of patents

#### Strategy:

Use Natural Language Processing (NLP) algorithm:

#### Linguistic / semantic mapping

- Provided by courtesy of M-CAM

## **Empirical Results I:**

A higher share of missed prior patent → A stronger patent

•Less likely to be withdrawn at the EPO

- Less likely to be rejected, conditional on nonwithdrawal
- Results are very robust

Examiner by technology by year

Examiner by assignee



# A higher share of missed prior patent → A *stronger* patent

### **Implications:**

US examiners can and do distinguish more patentable applications from less patentable ones, and search harder for the latter

## **Empirical Results II:**

A higher share of missed prior patents

A higher-value patent
More likely to be renewed at the USPTO

•*Results are very robust:* 

Examiner by technology by year

Examiner by assignee

#### Why search harder for less patentable applications? (1)

Examiner's burden of proof of non-patentability\_

I do not have to prove my invention is patentable.

It is the (patent) examiner who is to prove my invention is unpatentable.

Burden of proof is on examiners.

- Quote from a patent prosecutor

#### Insight #1:

Examiners search prior art to prove an application is unpatentable.

An allowance does not require them to prove anything.

Why search harder for less patentable applications? (2)

Examiner's burden of proof of non-patentability\_

I felt very sad when I had a gut feeling about a (bad) application,

but could not find the prior art (to reject it).

- Quote from an ex-examiner

#### Insight #2:

Examiners are not allowed to use "common sense" to reject;

They have to provide prior art to justify a rejection.

#### Why search harder for less patentable applications? (3)

Examiner's burden of proof of non-patentability\_

**MPEP Section 904.03 Conducting the search:** 

It is normally not enough that references be selected to meet only the terms of the claims alone,..., the search should, insofar as possible, also cover all subject matter which the examiner reasonably <u>anticipates</u> might be incorporated into applicant's amendment.

#### Insight #3:

To reject an application, examiners need to search harder,

not only for the original claims but also for anticipated amended claims.

Why search harder for less patentable applications? (4)

Examiner's incentives and constraints\_

• Biweekly points goal

One point is awarded: writes a FOAM, or disposes of an application

Bonus if production exceeds 110% of the goal

Want to dispose of applications quickly

• Quality control mechanisms

Quality review: *Error rate* 

Informal controls: *reputation concern* 

**Insight #4:** Examiners plausibly give bad applications more scrutiny

Why search harder for less patentable applications? (5)

**Pro-**"customer" procedures and policy

USPTO, funded by the fees it collects, refers to applicants as "customers"

Management wants to process applications quickly

Applicants never have to accept rejection

Negotiations after a final rejection

**Continuations** 

Examiners search for more prior art to show difficulty/cost of persisting, or to narrow down claims

**Insight #5:** More prior art for deterrence

### Inference:

US examiners can distinguish good applications from bad ones:

- Need to process applications as quickly as possible
- Target bad applications, which they:

Try to reject

Bear burden of proof of non-patentability

Search for prior art for both original and anticipated amended claims and discourage applicants from keeping coming back

**Dubious patents have SMALLER share of missed prior** 

### **Conclusion**

- We have a method that significantly predicts for US Patents:
- Withdrawal in Europe
- Grant in Europe
- Post-grant Opposition outcomes (less strongly)
- Renewal in US at 8 yrs

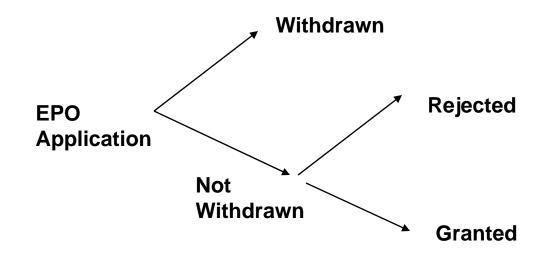
### **Conclusion**

- Examiners know more about the patents they grant than some theories imply
- We can use this knowledge, revealed in their behavior, to screen patents for strength and value

## Thank you !

#### Application outcomes at EPO

|                             | Not Withdrawn | Granted,              | Success at EPO |
|-----------------------------|---------------|-----------------------|----------------|
|                             |               | (given no withdrawal) |                |
| SMPP                        | 0.0819        | 0.0308                | 0.0974         |
|                             | (0.0185)***   | (0.0143)**            | (0.0204)***    |
| Have assistant examiner     | 0.0057        | 0.0134                | 0.0090         |
|                             | (0.0130)      | (0.0093)              | (0.0141)       |
| # of LLPP (log)             | 0.0024        | -0.0024               | 0.0021         |
|                             | (0.0067)      | (0.0053)              | (0.0072)       |
| # of claims                 | 0.0004        | -0.0004               | -0.0001        |
|                             | (0.0004)      | (0.0003)              | (0.0004)       |
| # of classifications        | -0.0005       | -0.0006               | -0.0007        |
|                             | (0.0019)      | (0.0013)              | (0.0019)       |
| # of inventors              | 0.0003        | -0.0026               | -0.0011        |
|                             | (0.0026)      | (0.0019)              | (0.0030)       |
| # of assignees              | 0.0730        | 0.0261                | 0.0823         |
|                             | (0.0212)***   | (0.0187)              | (0.0244)***    |
| # of total prior patents    | -0.0004       | -0.0000               | -0.0003        |
|                             | (0.0004)      | (0.0004)              | (0.0005)       |
| # of total subseq patents   | 0.0001        | 0.0002                | 0.0002         |
|                             | (0.0001)      | (0.0001)***           | (0.0001)       |
| Innovation stage            | -0.0634       | -0.0166               | -0.0709        |
|                             | (0.0243)***   | (0.0180)              | (0.0276)**     |
| Wait of total prior patents | -0.0011       | 0.0007                | 0.0000         |
|                             | (0.0016)      | (0.0012)              | (0.0017)       |
| Lag of total subseq patents | 0.0021        | 0.0015                | 0.0031         |
| 0 11                        | (0.0025)      | (0.0020)              | (0.0028)       |
| # of primary classes in     | -0.0039       | -0.0017               | -0.0055        |
| total prior patents         | (0.0024)      | (0.0016)              | (0.0026)**     |
| # of primary classes in     | 0.0014        | -0.0018               | 0.0004         |
| total subseq patents        | (0.0017)      | (0.0014)              | (0.0019)       |
| Observations                | 17525         | 11664                 | 16568          |

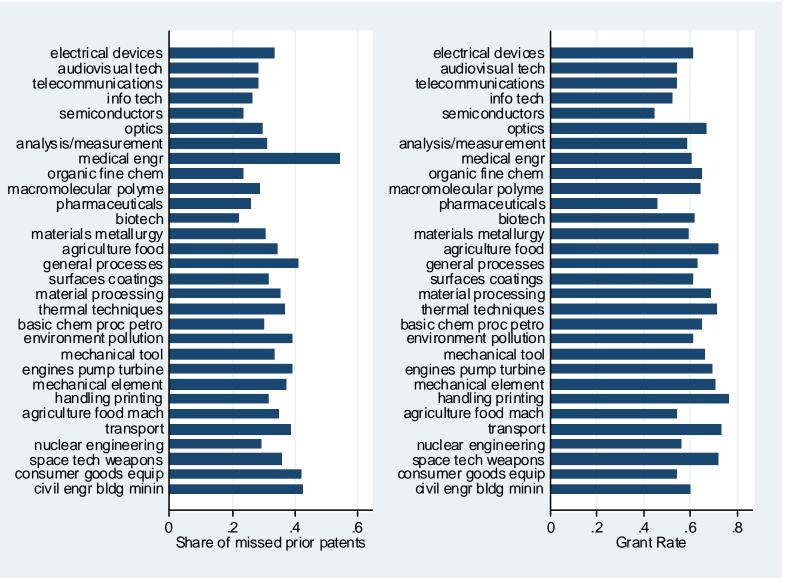

### **SMPP**:

### **Predict US patent renewal decisions**

|                       | (1)          | (2)               | (3)           |  |  |
|-----------------------|--------------|-------------------|---------------|--|--|
|                       | whole sample |                   |               |  |  |
|                       | Renewed at   | Renewed at 8th    | Maintained    |  |  |
|                       | 4th year     | year, given a 4th | after 8 years |  |  |
|                       |              | year renewal      |               |  |  |
| SMPP                  | 0.0168       | 0.0706            | 0.0792        |  |  |
|                       | (0.0114)     | (0.0161)***       | (0.0168)***   |  |  |
| Examiner fixed effect | yes          | yes               | yes           |  |  |
| Control variables     | yes          | yes               | yes           |  |  |
| Tech and Year dummies | yes          | yes               | yes           |  |  |
| Observations          | 17599        | 15734             | 16975         |  |  |

### **EPO Application Outcomes for US patents**

| Application<br>outcomes in EPO |              |
|--------------------------------|--------------|
| Withdrawn                      | 6321 (28.2%) |
| Rejected                       | 1242 (5.5%)  |
| Granted                        | 13445 (60%)  |
| Pending                        | 1310 (5.8%)  |
| Missing                        | 102 (0.5%)   |
| Total                          | 22420 (100%) |




#### How Good Is M-CAM Analysis?

#### Patents that have been invalidated by PUBPAT

|                                   | Patents<br>Invalidated | Prior Patent<br>that Invalidates | Whether the<br>invalidating<br>prior is<br>included in<br>LLPP | Whether the<br>invalidating<br>prior is<br>included in<br>MPP |
|-----------------------------------|------------------------|----------------------------------|----------------------------------------------------------------|---------------------------------------------------------------|
| WARF Stem cell patent             | 5843780                | 5166065                          | Y                                                              | Y                                                             |
| Pfizer Lipitor patent             | 5969156                | 5273995                          | Y                                                              | N                                                             |
| Forgent JPEG                      | 4698672                | 4541012                          | Y                                                              | Y                                                             |
| EpicRealm Website                 | 5894554                | 5701451                          | Y                                                              | Y                                                             |
| Monsanto                          | 5352605                | 4407956                          | Y                                                              | N                                                             |
| Patriot Scientific Microprocessor | 5809336                | 4691124                          | N                                                              | N                                                             |

#### SMPPs and Grant rates for different technologies

