Invention and Cap-and Trade Programs

Symposium on Intellectual Property and Entrepreneurship

12th Annual BCLT/BTLJ Symposium

Margaret Taylor

Goldman School of Public Policy Univ. California Berkeley March 7, 2008

Today's Road Map

- Climate change and the need for clean tech innovation
- 2. What we know about clean tech innovation
- Climate cap-and-trade programs (CTPs)
- 4. Evidence re: existing CTPs and invention
- 5. Climate policy implications

2050 Goals are our Best Guess for Safety

Even these goals may not be ambitious enough:

- Accelerating growth rate of atmospheric CO₂
- Faster-than-predicted ice melts ...

The Technologies aren't There Yet

- This will require innovation, probably in multiple technology strategies
- Designing policies that support innovation is at least a smart hedge...

What we know about clean tech innovation

Innovation and "Clean Tech"

- Overlapping activities lead to a successful innovation
 - Invention
 - Commercial adoption and diffusion
 - Post-adoption learning from experience
- Innovative success is difficult to achieve
 - R&D is a long-term, uncertain process
 - From birth to maturity of a technology, lots of obstacles
 - Likelihood of success greatest with the largest number of searchers and the broadest field of search
- The private sector is especially important
 - Of all U.S. R&D expenditures tabulated by NSF b/t 1953-2004,
 57% by industry with no federal support
- But the private sector
 - Under-invests in R&D compared to "socially optimal" returns
 - Notoriously under-invests in "clean technologies" that help maintain the public good of a clean environment

Who invents clean technologies?

Climate cap-and-trade programs (CTPs)

Climate Cap-and-Trade Programs (CTPs)

- Rapidly becoming the world's dominant climate policy instrument. Operating or developing in:
 - European Union
 - Australia
 - Over half of both the U.S. States and Canadian provinces
 - One Mexican state ...
- How they work:
 - Policy-makers set a cap on emissions and then allocate emissions "allowances" to polluting sources that are equivalent, in sum, to the cap
 - If sources can reduce emissions cheaply, they can then try to sell (or bank) excess allowances
 - Price is whatever the market will bear
- Current legislated caps aren't set at "safe" GHG emissions levels
 - If politics goes well, plan is to gradually tighten the caps
 - In the meantime, a lot of hopes are being pinned on CTPs stimulating technological innovation

What do CTPs mean for clean tech innovation?

- Some theory says better than other policies
 - Analysis assumes innovators = emissions sources
- Not much empirical evidence
 - Most work on adoption of existing technologies, not invention that can improve/substitute for existing technologies

Evidence re: existing CTPs and invention

Approach

Look at existing CTPs and invention, with an eye to the climate policy implications

- 1. Understand the CTPs we have evidence for
- Understand the relevant technologies and the adoption pattern
- 3. Measure inventive activity

	Scope	Pollutant	Major Emissions Source
Title IV SO ₂			
OTC/NBP NO _x			
RECLAIM (NO _x)			

	Scope	Pollutant	Major Emissions Source
Title IV SO ₂	National		
OTC/NBP NO _x	Regional		
RECLAIM (NO _x)	Sub-State		

	Scope	Pollutant	Major Emissions Source
Title IV SO ₂	National	Sulfur dioxide (SO ₂)	
OTC/NBP NO _x	Regional	Nitrogen oxide (NO _x)	
RECLAIM (NO _x)	Sub-State	NO _x and SO ₂ .	

	Scope	Pollutant	Major Emissions Source
Title IV SO ₂	National	Sulfur dioxide (SO ₂)	Coal-fired electric power plants
OTC/NBP NO _x	Regional	Nitrogen oxide (NO _x)	Transportation; Coal-fired power plants largest stationary source
RECLAIM (NO _x)	Sub-State	NO _x and SO ₂ .	Transportation; Manufacturing/Industrial is the largest centralized stationary source, with gas-fired power plants a significant, although not dominant, source

SO₂ Prices (\$/Ton) - Lower than Expected

NO_X OTC-SIP Prices (\$/Ton) - Lower than Expected

Allowance Prices

NO_X RECLAIM Prices (\$/Ton) - Lower than Expected

Allowance Prices

NO_X RECLAIM Prices (\$/Ton) - California Electricity Crisis Unexpected

Allowance Prices

Electricity System, from Coal to Homes Change Tech Buy Allowances

How the Options did in the SO₂ Market

- Prices stayed lower than expected

Clean Tech Market Expectations and Realities, across CTPs

- Less technology employed than expected in each CTP
 - Despite variations among techs re: cost, performance, market share
- In at least 2 of 3 CTPs, significant cancellations of tech. orders in progress

What about Clean Tech Invention?

- Used patents to gauge
 - The most widely used measure of invention with an eye to commercialization
- Considered a range of SO₂ and NO_x techs.
 - Used published, replicable patent searches
- Corrected for continuation, pendency issues
- Checked against potential reclassifications, USPTO trends, market data

SO₂ Patenting Activity: Scrubber

SO₂ Patenting Activity: Scrubber

SO₂ Patenting Activity: Scrubber

SO₂ Patenting Activity: Coal Cleaning

SO₂ Patenting Activity: Coal Cleaning

SO₂ Patenting Activity: Coal Cleaning

NO_X Patenting Activity: Scrubber

NO_X Patenting Activity: Scrubber

NO_X Patenting Activity: Scrubber

NO_X Patenting Activity: Combustion Modification

NO_X Patenting Activity: Combustion Modification

NO_X Patenting Activity: Combustion Modification

Will it Happen in Climate CTPs?

Only one operating so far: EU Emissions Trading Scheme

Prices (€/Ton) lower than Expected

Electricity System, from Coal to Homes Change Tech Buy Allowances

Distributed Generation

Why worry?

- Probably not bad for cheap, existing options
- But what about relatively expensive, potentially highly effective technologies that still need long lead times?
 - If we're certain that allowance prices reflect true balancing of societal benefits and costs, then invention results not a worry
 - But what if we're not certain about the caps?

- 1. Start with a strict cap and initial allowance auction (use revenues for R&D)
- Set regular intervals (5 years?) to modify the cap, but don't set exact levels when law is initially passed
 - Allows you to adjust to climate science, technologies
 - (Could revalue some of the banked allowances for similar effect)
- 3. Charge an independent board with the modifications

Preserves the advantages of a CTP while sustaining the market expectations of technology suppliers

Isn't this a carbon tax w/brokerage fees?

- Public R&D funding?
 - Risky to count on sustaining high levels over time (politics, budget exigencies)
 - Involves government picking winners
- Public subsidy programs?
 - Similar risks
- Standards?
 - Not as risky re: lapsing
 - Not as much of a "pick winners" problem.
 - Arguably better for inventor market expectations:
 - Standards usually get stricter

Public R&D better with Policy Creating Commercial Market

Public R&D better with Policy Creating Commercial Market

Public R&D better with Policy Creating Commercial Market

Public R&D Looks better with Alternative Generation, Except There's a Chicken-and-Egg Issue

Subsidies run out at the same time that public R&D drops!

Advantages of standards...

- Expected to stay around or get stricter
- More certain than other policies
- Can be technologically neutral

Usually experience has positive innovative outcomes... but good to have courage

The searchers: Do not have the same roles or incentives

Suppliers

- Invent and sell technologies
- Compete w/alt. techs (& price of CTP credits)

க் Emissions sources

Adopt technologies (or buy credits)

Section Sectin Section Section Section Section Section Section Section Section

Passes laws, implements/enforces policies, conducts/doles out R&D \$, etc.

About the Technologies

Options in a Traditional Pollutant CTP

