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Many situations exist in which a latent construct has both ordinal and continuous indicators.

This presents a problem for the applied researcher because standard measurement models

are not designed to accommodate mixed ordinal and continuous data. I address this

problem by formulating a measurement model that is appropriate for such mixed

multivariate responses. This model unifies standard normal theory factor analysis and item

response theory models for ordinal data. I detail a Markov chain Monte Carlo algorithm for

model fitting. I apply the model to cross-national data on political-economic risk and find that

the model works well. Software for fitting this model is publicly available in the MCMCpack

(Martin and Quinn 2004, ‘‘MCMCpack 0.4–8’’) R package.

1 Introduction

A great deal of work in political science makes use of latent concepts such as democracy,

autocracy, commitment to the free market, political-economic risk, political efficacy,

liberalism, and ethnic identity, to name just a few. Such latent concepts play important

roles in the theoretical work of all subfields of political science and are important

components of both individual-level and system-level explanations.

Two complementary approaches have dominated the literature dealing with the

measurement of latent concepts. The first approach emphasizes methods of data collection.

This includes the collection of proxy variables, the elicitation of expert opinion, and the

use of theoretical models to guide and focus data collection. The second approach deals

with the construction and use of measurement models. Examples include the use of factor

analysis models and item response theory models. While both of these research areas are

clearly important, the focus of this paper is squarely on the latter approach.

Until now, a major problem with all models used to measure latent political concepts is

that they are appropriate only when the observed responses are either all continuous or all

ordinal. Nonetheless, in many instances, some of the observed indicators of the latent

variable in question are continuous while others are ordinal. In these situations, researchers

often view their data-analytic choices as the following: (a) treat the ordinal variables as

continuous and use a standard normal theory factor analysis model, (b) discretize the
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continuous variables and use an item response model, (c) discard the ordinal (continuous)

observed variables and work with only the continuous (ordinal) variables, or (d) forgo

a model-based measurement strategy entirely. Each of these moves results in (possibly

serious) negative consequences for accurate inference. Ignoring the ordinal nature of some

of the observed variables can result in falsely precise and possibly biased estimates.

Discretizing continuous variables throws away information and diminishes the precision of

estimates. Discarding some variables similarly reduces the precision of estimates and may

make it impossible to uncover complicated, multidimensional structure in the observed data.

Non-model-based methods of measurement cannot account for measurement error and do

not allow researchers to assess the uncertainty of the resulting measures.

I address these problems by formulating a measurement model that is appropriate for

multivariate responses that have some continuous and some ordinal components. This

model does not suffer from the problems listed above and can be applied to strictly

continuous, strictly ordinal, or combinations of continuous and ordinal data. Further, the

model presented here generalizes both standard normal theory factor analysis models and

item response theory models for ordinal data in the sense that both of these types of models

are special cases of the model presented below. This allows for straightforward

interpretation of the model parameters by anyone who has some experience with either

traditional factor analysis or item response theory. I take a Bayesian approach to this

modeling enterprise and use Markov chain Monte Carlo (MCMC) to fit the model. This

has the added benefit that posterior quantities of interest (such as the probability that unit i
has a larger value of the latent construct in question than unit j) are easy to calculate.

Software for fitting this model is available in the MCMCpack (Martin and Quinn 2004)

package for the R system for data analysis and graphics (Ihaka and Gentleman 1996). This

software is publicly available under the GNU public license.

This paper proceeds as follows. In Section 2, I derive the factor analysis model for

mixed data and show how it generalizes the normal theory factor analysis model and two

parameter item response models. The third section deals with model fitting via Markov

chain Monte Carlo and briefly discusses posterior inference. In Section 4, I show how the

model can be used to measure what might be called ‘‘political-economic risk’’ in 62

countries. The last section concludes.

2 A Factor Analysis Model for Mixed Data

As in standard factor analysis and item response theory, the goal of the current modeling

enterprise is to capture patterns of association among several observed variables via

a relatively parsimonious model. Such a model can be given a latent variable interpretation

in which the observed patterns of association arise from an unobserved (i.e., latent)

variable or variables. Seen in this light, the observed response variables are imperfect

indicators of the unobserved variable or variables.

Let j ¼ 1, . . ., J index response variables and i ¼ 1, . . ., N index observations. Let X
denote the N 3 J matrix of observed responses. Each observed variable can be either

ordinal or continuous. If the jth variable is ordinal it has Cj . 1 categories.

I assume that the values of the elements of X are determined by a N 3 J matrix X* of

latent variables and a collection c of cutpoints:

xij ¼
x�ij if variable j is continuous
c if x�ij 2 ðcjðc�1Þ; cjc� and variable j is ordinal,

�
ð1Þ
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where it is assumed that c can take values in f1, 2, . . ., Cjg. To identify the model, I make

the standard assumption (see Johnson and Albert 1999) that cj0 [ �‘, cj1 [ 0, and cjCj
[

‘ for all j. The remaining cutpoints are free parameters to be estimated.

Patterns of association between the observed variables in X are modeled via a factor

analytic model for the latent X*:

x*i ¼ K/i þ ei i ¼ 1; . . . ;N; ð2Þ

where x*i is the J vector of latent responses specific to observation i, K is a J 3 K matrix of

factor loadings, /i is a K vector of factor scores specific to observation i, and ei ;
iidN (0,W) is

a J vector of disturbances. In what follows, I will make the simplifying assumption thatW is

diagonal. This is not necessary and can be easily relaxed in situations in which correlated

measurement error is suspected. For example, Green and Citrin (1994) show how the

grouping of similar survey questions in batteries can induce correlated measurement error.

As they go on to show, failing to adjust for this dependence structure of the measurement

error can seriously bias one’s point estimates of quantities of interest (such as K and /). It
should be noted that one typically needs a fairly large amount of data to make estimation of

the diagnonal elements ofW reasonable. Further, the Markov chain Monte Carlo algorithm

used to fit the model would need to be changed slightly to accommodate the nonstandard full

conditional distribution of the free elements of W.

It will also be convenient at some points below to write the system of N equations given

in Eq. 2 together as

X* ¼ UK9þ E; ð3Þ

where U is an N 3 K matrix with row i equal to /i and E is an N 3 J matrix with row i
equal to ei.

Some brief comments are in order about this model specification. The first element of/i is

set equal to 1 for all i. This ensures that the elements in the first column of K function as

negative item difficulty parameters for the ordinal response variables. The elements in the

first column of K that correspond to continuous responses represent the mean of these con-

tinuous variables. Elements of the first column of K that correspond to continuous variables

that have been standardized to have mean 0 should be constrained to 0. Standardizing

continuous variables is not necessary in this context but it does aid interpretation in that the

elements ofK that correspond to the continuous variable can be interpreted as factor loadings.

The prior specification completes the model. To identify the model, some elements of K
may be constrained to constants. In addition, some elements of K will be constrained to

take only positive (negative) values. This eliminates so-called rotational invariance

(Clinton et al., forthcoming). In general, to identify the K � 1-factor model it should be

possible to permute the rows of K so that

K ¼

k1;1 k1;2 0 . . . 0

k2;1 k2;2 k2;3 0 . . . 0

..

. ..
. ..

. . .
. . .

. ..
.

..

. ..
. ..

.
0

kK;1 . . . kK;K

..

. ..
.

kJ;1 . . . kJ;K

2
666666666664

3
777777777775
:
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In addition, at least one element in each column of K should be constrained to take only

positive or negative values. Lopes and West (1999) use a similar prior specification for

a factor loading matrix and discuss issues of model identification.

For the elements of K constrained to be positive (negative), I assume a normal prior

density truncated below (above) at 0. I assume the remaining elements of K follow

independent normal distributions. For both the truncated and untruncated normal priors for

typical element Kjk I assume that the mean parameter (before truncation) is l0jk
and the

precision (inverse variance) parameter (before truncation) is L0jk
. All elements of K are

assumed independent a priori. As is standard in the item response theory literature, the

diagonal elements of W that correspond to ordinal response variables are constrained to be

equal to 1 for reasons of identification. The diagonal elements of W that correspond to

continuous response variables are given independent inverse gamma priors. More

specifically, if variable j is continuous, wjj ; IG (a0j
/2, b0j

/2).

I assume an improper, uniform prior for all elements of c and that the latent factor scores
following independent standard normal distributions a priori: /i(2:K);

iid N (0, I), i ¼ 1, . . ., N
where /i(2:K) represents the vector formed from the second through Kth elements of /i. In

addition, it is assumed that K, /, W, and c are all mutually independent a priori.

Special cases of this model are the traditional normal theory factor analysis model

(Lawley 1967; Jöreskog 1969; Lawley and Maxwell 1971), which arises when all the

responses are continuous; the traditional two-parameter item response model with probit

link (Johnson and Albert 1999), which occurs when all the responses are dichotomous; and

the two-parameter item response model for ordinal data with probit link (Johnson and

Albert 1999; Treier and Jackman 2003), which arises when all the responses are ordinal,

polychotomous variables.

To see this, recall that the standard normal theory factor analysis model is

xi ¼ K/i þ ei i ¼ 1; . . . ;N ð4Þ

with

/i ;
iidNð0; IÞ i ¼ 1; . . . ;N

and

ei ;
iidNð0;WÞ i ¼ 1; . . . ;N:

It should be obvious that when all the observed Xs are continuous the normal theory factor

analysis model given in Eq. 4 is exactly the same as the model given in Eqs. 1 and 2.

To see the equivalence between the mixed data factor analysis model and the two-

parameter item response model with probit link, note that this item response model can be

written as1

xij ¼ c if x�ij 2 ðcjðc�1Þ; cjc� i ¼ 1; . . . ;N; j ¼ 1; . . . ; J; c ¼ 1; . . . ;Cj ð5Þ
x�ij ¼ aj þ b9jhi þ eij i ¼ 1; . . . ;N; j ¼ 1; . . . ; J

eij ;
iid Nð0; 1Þ i ¼ 1; . . . ;N; j ¼ 1; . . . ; J; ð6Þ

1See Johnson and Albert (1999) and Treier and Jackman (2003).
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where aj is the item difficulty parameter for item j, bj is the vector of item discrimination

parameters for item j, and hi is the latent subject ability of subject i. Note that when all

observed Xs are ordinal the discretization rules in Eqs. 1 and 5 are equivalent, the jth row

of K is equivalent to (aj, b9j), /i is equivalent to (1, h9i)9, and eij is equivalent to �ij.

Consequently, when all observed variables are ordinal the mixed factor analysis model

developed here is equivalent to the two-parameter item response model with probit link.

3 Model Fitting and Inference

A program that uses the algorithm described below to fit the mixed response factor

analysis model is available under the GNU public license. The software is part of the

MCMCpack (Martin and Quinn 2004) package written for the R (Ihaka and Gentleman

1996) environment for statistical computing and graphics and features an easy-to-use,

formula-based interface along with a suite of functions for MCMC diagnostics and

summarization. Example code is provided in the next section.

Writing the model in terms of the latent X* is useful not only to build intuition but also

for model fitting. Building on the ideas in Tanner and Wong (1987), Albert and Chib

(1993), and Johnson and Albert (1999), I choose to treat X* as latent data and work with

the posterior density

pðX*; c;K;/;WjXÞ} pðXjX*; cÞpðX*jK;/;WÞpðcÞpðKÞpðUÞpðWÞ

}
YN

i¼1

YJ

j¼1

( (
I ðxij ¼ x�ijÞI ðXj continuousÞ

þ
XCj

c¼1

I ðxij ¼ cÞI ðx�ij 2 ðcjðc�1Þ; cjc�ÞI ðXj ordinalÞ
�

3 pN ðx�i jK/i;WÞ
�

pðKÞpðUÞpðWÞ; ð7Þ

where I(a) is the indicator function, which is equal to 1 if a is true and equal to

0 otherwise, pN (zjl, R) is a multivariate normal density with mean l and variance-

covariance matrix ) evaluated at z, and p(K), p(U), and p(W) are the prior densities for K,
/, and W, respectively. The prior for c drops because it is a constant for all values of c.

The advantage of working with the augmented posterior in Eq. 7 is that it is relatively

easy to derive full conditional distributions for most of the model parameters from this

posterior density. This admits a fairly simple Markov chain Monte Carlo (MCMC)

algorithm2 to be used for model fitting. The algorithm used here works by sampling from

the full conditional distributions of X*, K, /, and W and using a Metropolis-Hastings step

to sample c.
It straightforward to show that the full conditional distribution of x�ij is a normal

distribution with mean k9j /i and variance 1 truncated to the interval (cjðxij�1Þ, cjðxijÞ] if
variable j is ordinal and that the full conditional distribution of x�ij is a point mass at xij if

variable j is continuous. Here kj denotes the vector formed from the jth row of K.
The full conditional distribution for /i(2:K) is normal with mean (I þ K9�ð2:KÞ W�1

K�(2:K))
�1 (K9�ð2:KÞ W

�1 (x�i � k1)) and variance (I þ K9�ð2:KÞ W
�1 K�(2:K))

�1. The notation

2For more information about MCMC see Gelman et al. (2003), Robert and Casella (1999), Jackman (2000), and
Gill (2002).
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K�(2:K) denotes the matrix formed from the second through Kth columns of K and k1
denotes the first column of K.

The full conditional forK is a bit more complicated due to the possibility of both equality

and inequality constraints on elements ofK. In what follows, I use the notation kjs to denote

the vector formed from the free elements of row j of K, and kj� to denote the vector formed

from the fixed elements of row j of K. Similarly, Ujs and Uj� are matrices containing the

elements of U that are multiplied by kjs and kj�, respectively, in the expression UK9.
Finally, l0js

denotes the prior mean of kjs and L0js
denotes the prior precision matrix of kjs.

As would be expected given the normal priors for kjs and the assumption of normal

disturbances in Eq. 2, the full conditional for kjs is (possibly truncated) normal. When there

are no a priori inequality constraints on kjs the full conditional is normal with mean (L0js
þ

w�1
jj U9js Ujs)

�1 (L0js
l0js

þ w�1
jj U9js (x�j �Uj�kj�)) and variance (L0js

þ w�1
jj U9js Ujs)

�1.

When inequality constraints are present, a draw from the full conditional distribution of kjs

can be achieved by sampling from the previously mentioned normal distribution and

accepting only draws that satisfy the inequality constraints.

If variable j is continuous, the full conditional distribution of wjj is an inverse gamma

distribution with shape (a0j
þ N)/2 and scale (b0j

þ (x�j � Ukj)9 (x�j � Ukj)), where x�j is

the jth column of X* and kj is the vector formed from the jth row of K. If variable j is
ordinal, wjj is constrained to 1.

The full conditional distribution for c is not a member of a known parametric family.

To sample c we make use of J Metropolis-Hastings steps to sample cj, j ¼ 1, . . ., J. This
works as follows. First, a candidate value cðcanÞ

j is drawn. This is done element by element.

The cth element cðcanÞ
jc of cðcanÞ

j is drawn from a normal distribution with mean cjc and

variance t2j truncated to the interval (c
ðcanÞ
jðc�1Þ, cj(cþ1)) for c ¼ 2, . . ., Cj � 1. Here t2j is a user-

specified tuning parameter. t2j should be set by the user so that the fraction of candidate

values that are accepted is somewhere between 0.20 and 0.50. One typically sets the tuning

parameter by trial and error. The MCMCpack implementation of this model reports this

acceptance rate so that users can adjust the tuning parameter appropriately. Once the

candidate value cðcanÞ
j is drawn it is accepted as a value of cj with probability a, where

a ¼
YN

i¼1

U
�
cðcanÞ

jxij
� k9j/i

�
� U

�
cðcanÞ

jðxij�1Þ � k9j/i

�
Uðcjxij

� k9j/iÞ � Uðcjðxij�1Þ � k9j/iÞ

3
YC�1

c¼2

Uððccþ1 � ccÞ=tjÞ � U
��

cðcanÞ
c�1 � cc

�
=tj

�
U
��

cðcanÞ
cþ1 � cðcanÞ

c

�
=tj

�
� U

��
cc�1 � cðcanÞ

c

�
=tj

� :

This Metropolis-Hastings step is very similar to that proposed in Cowles (1996) for the

cutpoints in an ordinal regression model.

4 Application: Measuring Political-Economic Risk in 62 Countries

Scholars in the fields of international relations and comparative politics make use of

numerous latent concepts that can be linked to both ordinal and continuous indicators.

Examples include democracy, economic freedom, corruption, and political and economic

risk, to name but a few. The mixed data factor analysis model discussed above is well

suited to the task of estimating indices of the latent concepts given observed indicators. In

what follows, I use the example of political-economic risk to demonstrate how the mixed

data factor analysis model can be used for such a task.

343Bayesian Factor Analysis for Mixed Responses



Measures of political-economic risk, which I will take to mean the risk of the state

‘‘manipulat[ing] economic rules to the advantage of itself and its constituents’’ (North and

Weingast 1989, p. 808), are of substantial interest to scholars (see inter alia Borner et al. 1995;

Knack andKeefer 1995; Sobel 1999; Henisz 2002b), policy makers, and investors. Attempts

to measure political-economic risk have proceeded in two distinct directions. The first

measurement approach, as seen in thework of Henisz (2002a) andBeck et al. (2001), focuses

on institutional determinants of risk relating to the number and strength of veto players in the

political system. These approaches have a strong theoretical basis. Further, the focus onwell-

documented institutional features makes it possible to construct these measures well into the

past. Nonetheless, these measures are not without problems. Despite prima facie evidence

that political risk varies considerably over moderate time spans, these institutional measures

exhibit very little temporal variation. The secondmeasurement strategy, typified by the work

of Coplin (2003) and Howell and Coplin (2001), relies on subjective expert assessments of

political and economic risk in several subcategories that are then added together to form

a cumulative scale. While the resulting measures do display more temporal variability than

the institutional measures, the aggregation of expert opinion is not handled in a principled

manner. As a result, it is not clear what to make of the precision of these measures.

It should be noted that the modeling goal here is primarily data summarization. If the

model does a reasonable job of accounting for variability in the observed indicators, then

the latent factor scores will provide a convenient lower-dimensional summary of these

observed variables. With a stronger theory linking observed indicators to latent concepts

and better data, it is also possible to use the model to form more theoretically meaningful

scales. The example below does not quite meet this level of theoretical rigor.

4.1 Data and Model Specification

The data used to construct the index of political-economic risk come from three sources:

Henisz’s Political Constraint Index (POLCON) Dataset (Henisz 2002a), the State Failure
Task Force Problem Set (Marshall et al. 2002), and the ACLP Political and Economic
Database (Alvarez et al. 1999). Five variables were used in the analysis below. Of these

five, one variable was dichotomous; two were nondichotomous, ordinal variables; and two

were continuous.

The first observed measure of political-economic risk considered here is an indicator

variable that measures the independence of the national judiciary. This variable is equal to

1 if the judiciary is judged to be independent and equal to 0 otherwise. This measure of

judicial independence is from Henisz (2002a).

The next observed indicator is the black-market premium in each country. This variable

is from Marshall et al. (2002) and is operationalized as the black-market exchange rate

(local currency per dollar) divided by the official exchange rate minus 1. In the analysis

below, this variable is used as a proxy for illegal economic activity more generally. I take

the natural log of the black-market premium to transform it to approximate normality.

Because the black-market premium was 0 for some country years, 0.001 was added to the

black-market premium before taking the log.

The third measure of political-economic risk is an ordinal variable from Marshall et al.

(2002) measuring the lack of expropriation risk. As originally coded, this variable ranged

from 0 to 10 and was based on a subjective coding by the State Failure Task Force.

Because of extremely low cell counts in many of the categories I collapsed the original

scale to a six-point scale. Values of the original variable less than or equal to 3.5 were

recoded to 0, values of the original variable in (3.5, 4.5] were recoded to 1, values of the
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original variable in (4.5, 5.5] were recoded to 2, values of the original variable in (5.5, 6.5]

were recoded to 3, values of the original variable in (6.5, 8.5] were recoded to 4, and

values of the original variable greater than 8.5 were recoded to 5.

The fourth indicator of political-economic risk is a variable measuring lack of

corruption. This variable is from Marshall et al. (2002). As with the expropriation variable

above, this is an ordinal variable constructed from expert judgment. The original variable

was scaled from 0 to 6 and occasionally took noninteger values. As above, the cell counts

in some of these categories were extremely small. As a result I recoded this variable to a 0-

to-5 scale by subtracting 1 from the original variable, taking the integer part of this

number, and then recoding values of �1 to 0.

The final variable used here is productivity as measured by real gross domestic product

(GDP) per worker in 1985 international prices. This variable, from Alvarez et al. (1999), is

logged to transform it to approximate normality.

To eliminate complications caused by temporal dependence and to maximize the

number of cases with observed data, I focus on measuring political-economic risk in 1987.

For that year, 62 countries have fully observed data on all five indicators. The raw data are

presented in Table 1.

I treat the independent judiciary, lack of expropriation risk, and lack of corruption

variables as ordinal variables and the black-market premium and productivity variables as

continuous variables. The continuous variables are standardized to have mean 0 and

standard deviation 1. As result I constrain the elements of k1 corresponding to these

variables to 0. The prior mean of each element of K is assumed to be 0 (before any

truncation) and the prior precision is assumed to be 0.25 (again, before any truncation). To

help identify the model I constrain the element of k2 for the independent judiciary variable

to be negative. This implies that an independent judiciary is negatively associated with

political-economic risk. To complete the prior specification, I assume that a0black-market
¼

a0productivity ¼ 0.001 and b0black-market
¼ b0productivity ¼ 0.001. This is a relatively uninformative

prior for the error variances.

4.2 Results

Model fitting was accomplished using the MCMC algorithm discussed above. The initial

10,000 MCMC scans were discarded as burn-in. The posterior summaries below are based

on a posterior sample of size 10,000 formed by running the chain for an additional

1,000,000 scans and storing every 100th scan. The chain mixed reasonably well and

standard diagnostics suggest that the sample is approximately from the stationary

distribution of the chain.

To see how easy it is to fit this model in R with MCMCpack I have included the code

used to fit the model for this application below:

library(MCMCpack)

post.samp ,- MCMCmixfactanal(;courtsþbarb2þprsexp2þ
prscorr2þgdpw2,

factors ¼ 1, data¼PErisk,

lambda.constraints ¼ list(courts¼list(2,‘‘�’’)),

burnin¼10000, mcmc¼1000000, thin¼100,

verbose¼TRUE, L0¼0.25,

store.lambda¼TRUE, store.scores¼TRUE, tune¼.25)

The variables to be modeled (courts, barb2, prsexp2, prscorr2, and gdpw2) are sent to the

model-fitting function as the right-hand side of an R formula. The user specifies the
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Table 1 Political-economic risk data for 62 countries in 1987

Country
Ind.

judic.
log(black-market

premium) Expropriation Corruption log(GDP/worker)

Argentina 0 �0.72 1 3 9.69

Australia 1 �6.91 5 4 10.30

Austria 1 �4.91 5 4 10.10

Bangladesh 0 0.78 1 0 8.38

Belgium 1 �4.62 5 4 10.25

Bolivia 0 �2.46 0 0 8.58

Botswana 1 �1.24 4 3 8.78

Brazil 1 �0.46 4 3 9.38

Burma 0 1.60 3 1 7.10

Cameroon 0 �4.23 3 1 8.12

Canada 1 �6.91 5 5 10.41

Chile 1 �1.54 3 2 9.26

Colombia 0 �2.06 3 2 9.19

Congo–Kinshasa 0 �2.32 1 0 7.10

Costa Rica 1 �5.09 3 4 9.17

Cote d’Ivoire 1 �4.23 4 2 8.23

Denmark 1 �6.91 5 5 10.11

Dominican Republic 0 �2.38 2 2 8.90

Ecuador 1 �1.85 3 2 9.12

Finland 1 �6.91 5 5 10.12

Gambia 0 �1.54 4 2 7.50

Ghana 0 �1.01 2 1 7.60

Greece 0 �2.07 3 3 9.70

Hungary 1 �0.90 4 3 9.35

India 0 �2.11 4 2 7.97

Indonesia 0 �2.10 3 0 8.39

Iran 0 2.34 0 2 9.37

Ireland 1 �6.91 5 4 9.89

Israel 0 �2.32 4 4 10.07

Italy 1 �6.91 4 3 10.26

Japan 1 �6.91 5 4 9.89

Kenya 0 �2.33 2 2 7.62

Korea, South 0 �2.66 4 1 9.42

Malawi 0 �1.47 3 3 7.03

Malaysia 1 �3.93 4 3 9.18

Mexico 0 �1.66 2 2 9.66

Morocco 0 �3.16 3 1 8.78

New Zealand 1 �6.91 5 5 10.18

Nigeria 0 0.30 1 1 7.69

Norway 1 �6.91 5 5 10.30

Papua New Guinea 1 �2.64 4 2 8.13

Paraguay 0 �0.97 3 0 8.73

Philippines 0 �2.96 1 1 8.38

Poland 1 1.32 3 3 9.05

Portugal 1 �2.46 4 3 9.44

Sierra Leone 0 1.41 3 1 7.76

Singapore 1 �4.85 5 5 9.88

South Africa 0 �2.18 3 4 9.19
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number of factors to estimated (in this case one), the data set, what constraints are to be

applied to K (in this case the discrimination parameter on the courts variable is constrained

to be negative), the number of burn-in iterations, the number of MCMC scans after burn-

in, the thinning interval, the prior precision (in this case 0.25) for the elements of K,
whether to store the samples from the posterior distribution of K, whether to store the

samples from the posterior distribution of the factor scores, and the tuning parameter for

the Metropolis-Hastings algorithm. Full details are provided in the MCMCpack
documentation.

Table 2 displays a summary of the posterior distribution of K and W. Looking first at

the parameters directly tied to the continuous variables log(black-market premium) and

log(GDP/worker) we see that this one-dimensional factor model can account for a sizable

portion of variability in these variables. Since both of these variables were standardized to

have mean 0 and standard deviation 1, we can interpret the results as we would the results

from confirmatory factor analysis. The factor loading of 0.750 on log(black-market

premium) is large and indicates a positive association between the black-market premium

and the latent factor that we are interpreting to be political-economic risk. This is in line

with our prior expectations. Further, the estimated error variance is estimated to be 0.453,

which implies that over half of the variability in the log of the black-market premium can

be accounted for by the single latent factor. Similarly, the estimated factor loading on

log(GDP/worker) is �0.721, which indicates, as expected, a negative association between

productivity and the latent factor. Once again, the latent factor accounts for over half the

variability in log(GDP/worker).

Turning to the ordinal variables we again see results in line with our prior expectations.

The elements of k2 for the ordinal variables are all estimated to be negative and have

almost no posterior mass to the right of 0. Again this indicates a strong negative

association between the latent factor and an independent judiciary, lack of expropriation

threat, and lack of corruption. In the terminology of item response theory, these variables

discriminate well.

Table 1 Continued

Country
Ind.

judic.
log(black-market

premium) Expropriation Corruption log(GDP/worker)

Spain 1 �6.91 5 3 10.05

Sri Lanka 0 �1.86 2 2 8.63

Sweden 1 �6.91 4 5 10.22

Switzerland 1 �6.91 5 5 10.34

Syria 0 1.73 1 1 9.66

Thailand 0 �6.91 3 2 8.55

Togo 0 �4.23 4 1 7.33

Tunisia 0 �2.59 2 2 9.05

Turkey 0 �2.67 3 2 8.98

United Kingdom 1 �6.91 5 5 10.13

Uruguay 0 �2.13 2 2 9.41

Venezuela 1 0.43 3 2 9.85

Zambia 0 0.97 3 1 7.73

Zimbabwe 0 �0.64 3 2 7.97

Note. The corruption and expropriation variables are measures of the lack of corruption and lack of expropriation

risk, respectively. Also, log(black-market premium) is actually log(0.001 þ black-market premium).
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While the posterior summary of K and W provides information about the overall

patterns of association among our observed variables, what researchers are often most

interested in are the estimates of the latent factor scores (the /is). One of the great

advantages of the Bayesian treatment of the model above (as well as measurement models

more generally) is that this approach allows one get point estimates and uncertainty

estimates about the latent factor scores in a principled fashion. Such point and interval

estimates are presented in Fig. 1. Interpreted as a measure of political risk, the latent factor

has good face validity. We see that Canada, Switzerland, Norway, New Zealand, Finland,

Denmark, and the United Kingdom are all at the very low end of the scale, indicating that

they are the least risky. However, Bolivia, Congo-Kinshasa, and Bangladesh are all at the

high end of the risk scale.

It is also interesting to look at the marginal 90% credible intervals for the latent factor

scores. Typically, when scales are constructed using confirmatory factor analysis or similar

techniques, only point estimates are reported. Nonetheless, as we see in Fig. 1, there can be

substantial uncertainty in such measures. However, it should be noted that these marginal

credible intervals are somewhat misleading due to the positive correlation between the

latent factor scores. If one is truly interested in determining whether observation a has

a higher value of the latent factor than observation b then one should calculate the posterior

probability that /a is greater than /b. This is easily accomplished by simply taking the

MCMC output and calculating the fraction of the scans in which /a was greater than /b.

As an example, to calculate the posterior probability that /Singapore is greater than

/Denmark we calculate the fraction of draws for which /Singapore . /Denmark. Doing this, we

Fig. 1 Plot of estimates of latent political-economic risk, 1987. Dots are posterior means and the

thick line segments depict the (marginal) central 90% credible intervals for each country.

!

Table 2 Posterior density summary of the measurement model of political-economic risk

k1 k2 wjj

Independent judiciary �0.041

(0.370)

�2.930

(0.983)

1.000

–

log(black-market premium) 0.000

–

0.750

(0.114)

0.453

(0.099)

Lack of expropriation threat 3.517

(0.639)

�1.963

(0.459)

1.000

–

Lack of corruption 3.146

(0.629)

�2.278

(0.546)

1.000

–

Productivity (log(GDP/worker)) 0.000

–

�0.721

(0.115)

0.494

(0.105)

Note: Entries without parentheses are posterior means and entries with parentheses are posterior standard

deviations. The column labeled k1 (the first column of K) provides information about what can be thought of as

negative item difficulty parameters in the ordinal item response theory literature; the column labeled k2 (the

second column of K) provides information about what can be thought of as the factor loadings or the item

discrimination parameters; and the column labeled wjj provides information regarding the error variances. The

element of k2 for independent judiciary was constrained to be negative. The chain was run for 1,000,000 scans

after 10,000 burn-in scans. Every 100th scan was saved. The Metropolis-Hastings acceptance rate was 0.352.
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find that the posterior probability that Singapore is ‘‘riskier’’ (as judged by its latent factor

score) than Denmark is 0.67.

It is also possible to calculate the posterior probability that a particular country has the

highest latent risk score. To do this we calculate the fraction of the time that the / draw for

the country in question was the maximum value of / across all the countries. Doing this

for the three highest-ranked countries (Bolivia, Congo-Kinshasa, and Bangladesh), we find

that there is an approximately 26% chance that Bolivia is the riskiest country, a 25%

chance that Congo-Kinshasa is the riskiest country, and a 24% chance that Bangladesh is

the riskiest country. The probability that one of these three countries has the highest risk

rating is simply 0.26 þ 0.25 þ 0.24 ¼ 0.75.

One might reasonably wonder how the mixed data factor analysis results compare with

those from a cruder classical normal theory factor analysis. To gauge this, I used the R
factanal() function to fit such a model to these data under the (clearly false) assumption

that the five manifest variables follow a multivariate normal distribution. The estimated

factor loadings and uniquenesses from this fit are presented in Table 3. It should be noted

that the results in this table are not directly comparable to the results in Table 2 for

essentially the same reason that linear regression coefficients are not comparable to probit

coefficients.

What are comparable are estimates of the latent factor scores from the mixed data factor

analysis model and the predictions of the latent factor scores from the classical model. In

the classical framework, the factor scores are not treated as parameters and, as such, there

is no way to uniquely estimate them. What can be done in the classical framework is to

construct predictions of the latent factor scores. Several approaches have been proposed

for this task (see Lawley and Maxwell 1971 for a discussion). Here I use what are

commonly referred to as the regression scores as my predictions. Note that the classical

method does not provide any uncertainty statements about the latent factor scores.

However, the Bayesian framework described in this article almost automatically provides

a sense of estimation uncertainty.

Figure 2 presents the predicted factor scores from the classical model. As we would

expect, we see general agreement in the ranking of countries on their latent factor scores

across models. Nonetheless, there are numerous small-to-moderate changes in the ordering

of the countries on the latent scores across the two sets of results. This can most easily be

seen by plotting the ranks of the classical scores on the ranks of the Bayesian scores. This

is done in Fig. 3. Here we see some moderate changes in the ordering of the countries on

Table 3 Factor loadings and uniquenesses from a normal theory maximum likelihood

factor analysis of political-economic risk

Loadings Uniquenesses

Independent judiciary �0.796 0.366

log(black-market premium) 0.742 0.450

Lack of expropriation threat �0.803 0.356

Lack of corruption �0.901 0.189

Productivity (log(GDP/worker)) �0.747 0.442

Fig. 2 Plot of predictions of latent political-economic risk, 1987. Dots are the regression scores

from a normal theory maximum likelihood factor analysis of the data.

!
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the risk scale. Two countries (Gambia and Togo) move five positions on the scale, while

one country (Iran) moves eight positions. Given the ease with which the more principled

mixed data factor analysis model can now be fitted, there is currently no real reason to

accept this amount of bias.

5 Conclusion

Political scientists routinely deal with latent concepts that have both continuous and

ordinal indicators. The model presented above provides a principled means to go forward

with model-based measurement in such situations. Not only is it a principled approach, but

it is also easy for researchers to use and interpret. Software that implements the MCMC

algorithm discussed in the paper is freely available at CRAN (http://cran.r-project.org) as

the mixfactanal() function in the MCMCpack package. The software uses a fairly

transparent formula-based interface that should be relatively easy to use for anyone with

some experience with R. Further, since the model generalizes traditional normal theory

factor analysis and item response theory models, the interpretation of the model parameters

is fairly straightforward.

It is also possible to extend the model presented above in a number of directions. First,

as noted in the body of the paper, allowing for correlated measurement error is quite

simple. A different prior for W is required and the simulation of W given the other model

parameters will also change, but the rest of the MCMC algorithm would remain intact.

Second, it is possible to allow for an even wider range of response types. Poisson-

distributed counts, censored and/or truncatated variables, and exponential and/or gamma-

distributed continuous variables are all possible to accommodate in this general modeling

framework. Finally, it is possible to extend the model to allow for temporal, spatial, or

spatiotemporal dependence. This is especially important for applications in comparative

politics and international relations.
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scores from a normal theory factor analysis.
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