
Preliminary Draft: Please do not quote, cite, or redistribute without permission

University Software Ownership: Trends, Determinants, Issues

Arti Rai,* John Allison,** Bhaven Sampat,*** and Colin Crossman****

1. Introduction

Software patents and university-owned patents represent two of the more
controversial intellectual property developments of the past 25 years. For the last few
years, the European Union has been embroiled in a fierce debate over the merits of
explicitly allowing software patents.1 In the U.S., where such patents clearly exist,
various legal scholars have quarreled with the breadth of software patent claims.2 Some
have also suggested that, given the poor quality of prior art documentation and patent
examiner training in the area of software, many issued software patents are likely to be
obvious.3 More generally, there is significant debate over the extent to which software
patents are likely to foster innovation.4 Because software products are often “complex”
and may infringe many patents, some producers of end-product software are also

* Professor, Duke Law School; Faculty, Duke Institute for Genome Sciences and Policy. The authors
gratefully acknowledge the support of the National Human Genome Research Institute and the Department
of Energy (P50 HG003391-02).
** Professor, University of Texas
*** Assistant Professor, Columbia
**** Faculty Fellow, Duke Law School, 2005-2006
1 As a formal matter, article 52(2)(c) of the European Patent Convention forbids patents on “programs for
computers.” However, this provision has been interpreted to cover only computer programs “as such.”
The European Patent Office allows software patents that have a “technical” character/effect. Moreover, in
at least some cases, this technical character/effect has been found in the transformation that the program
effects in the internal functioning of the computer on which it is runs. See, e.g., Computer Program
Product/IBM, T1173/97-3.5.1 (EPO Board of Appeals July 1, 1998)
2 Dan Burk & Mark Lemley, Policy Levers in Patent Law, 89 VA. L. REV. __ (2003) (arguing that the Court
of Appeals for the Federal Circuit has an exaggerated sense of the skill of the ordinary computer scientist
and is therefore likely to allow broad patents); see Arti K. Rai, Engaging Facts and Policy: A Multi-
Institutional Approach to Patent System Reform, 103 COLUM. L. REV. 1035, __ (2003) (arguing that
because pure software patents are not limited to a particular physical machine or process, they may be
problematic in terms of breadth). A recent case involving a university software patent suggests that the
Federal Circuit may now be less inclined to allow broad scope in software patents. See LizardTech, Inc. v.
Earth Resource Mapping, 424 F.3d 1336 (Fed. Cir. 2005) (holding patent claim that generically covered
methods for eliminating edge artifacts created by the use of a particular type of digital compression
technology invalid under Section 112). Even cases like Lizard Tech do not, however, require software
patentees to disclose source code.
3 See, e.g., Glynn Lunney, E-Obviousness, 7 Michigan Telecommunications & Technology L.R. 363 (2001).
4 Compare JAMES BESSEN & ROBERT M. HUNT, AN EMPIRICAL LOOK AT SOFTWARE PATENTS 7-9 (Fed. Res. Bank of
Philadelphia Working Paper No. 03-17, available at < http://www.researchoninnovation.org/swpat.pdf > (arguing,
based on analysis of software patents held in all industries, that such patents are likely to be substitutes for
innovation) with Ronald Mann, Do Patents Facilitate Financing in the Software Industry, 83 TEX.L.REV.
961 (2005) (arguing that patents may promote entry of small, innovative software firms) and Robert
Merges, Patents, Entry, and Growth in the Software Industry (working paper 2006) (patents facilitate the
entry of new software firms and that incumbent software firms with “good” patents enjoy market success).
These papers can be reconciled to the extent that Merges and Mann focus on the software industry while
Bessen and Hunt look at software patents more generally.

Preliminary Draft: Please do not quote, cite, or redistribute without permission

unhappy.5 Large incumbent software firms like IBM and Microsoft have been the prime
movers behind recent legislative proposals that would make patents easier to challenge
and injunctive relief, particularly by non-practicing patentees, more difficult to secure.6
The controversy over software patents has also been fueled by the rise, and arguable
success, of the “open source” movement in software. Open source software developers
eschew patents. Although they do rely on intellectual property in the form of copyright,
they do so for purposes of enunciating licenses under which source code is made freely
available.

In contrast with software patents, university-owned patents existed before 1980.
However, the scale of university patenting has increased substantially over the past 25
years, since the 1980 passage of the Bayh-Dole Act. While the legal question was
sometimes murky prior to 1980, Bayh-Dole makes it unequivocally clear that universities
can patent federally funded research.7

Increasingly assertive university patenting has attracted a fair amount of attention
in both the scholarly and popular literature.8 Additionally, because universities, and
sometimes even their exclusive licensees, are non-practicing patentees the debate over
whether such patentees act as “trolls” when they assert patents against successful
commercializers has implications for universities.9 Most studies have focused, however,
on patenting within the life sciences.10 This focus is hardly surprising, as the majority of
university-owned patents (and certainly the majority of large revenue generators) appear

5 In contrast, while products in the biopharmaceutical industry may require many patented inputs for their
creation, the products themselves are likely to be covered by only a few patents. Thus one common
strategy for avoiding patent thickets is secret infringement. See Walsh et al. (2003)
6 See Patent Reform Act, H.R. 2795, 109th Cong. (2005). When it was originally introduced, H.R. 2795
contained language that might have made injunctive relief the exception rather than the rule. Opposition
from the biotechnology and pharmaceutical industries led to elimination of this language. In a recent
Supreme Court case, e-Bay v. MercExchange, the software industry supported e-Bay’s argument that the
Court of Appeals for the Federal Circuit granted injunctive relief too readily. The Supreme Court decision
accepted this argument in part. ___ U.S. ___ (2006)
7 Although not all university research is federally funded, the federal share represented 64% of university
R&D in FY 2004. See www.nsf.gov/statistics/nsf06323/pdf/tab1.pdf. In computer science and electrical
engineering, the federal percentage of university R&D in FY 2004 was even higher, 73% and 68%
respectively. In contrast, industry accounts for only about 5% of university R&D (including CS/EE R&D).
These percentages have been fairly consistent over the last 20 years.

We report these statistics to buttress our supposition that most software-related research done by
universities is federally (or at least publicly) funded and thus subject to the types of economic analysis
usually employed in thinking about publicly funded research. Unfortunately, although Bayh-Dole requires
universities to report federal funding when they file for patents, many do not. Thus we can not rely on such
reports to determine the funding source of research that led to specific software patents.
8 For a popular account that is quite critical, see JENNIFER WASHBURN, UNIVERSITY, INC.: THE CORPORATE
CORRUPTION OF HIGHER EDUCATION (2005). For a comprehensive analysis of available data on the impact
of Bayh-Dole, see MOWERY ET AL., IVORY TOWER AND INDUSTRIAL INNOVATION (2004).
9 Mark Lemley, Are Universities Patent Trolls (working paper 2006)
10 See, e.g., Bhaven Sampat, Genome Patents: Bad for Science? (working paper 2005); Rai & Eisenberg,
Bayh-Dole Reform and the Progress of Biomedicine (2003); Pierre Azoulay et al., The Determinants of
Faculty Patenting Behavior: Demographics or Opportunities; Fiona Murray and Scott Stern, Do Formal
Intellectual Property Rights Hinder the Free Flow of Scientific Knowledge?: An Empirical Test of the Anti-
Commons Hypothesis, NBER Working Paper 11465. A few researchers have compared the patent practices
of life scientists with those of physical scientists. See Jason Owen-Smith and Walter W. Powell, To Patent
or Not: Faculty Decisions and Institutional Success at Technology Transfer (discussing patenting practices
of life scientists and physical scientists at two universities, one private and one public).

Preliminary Draft: Please do not quote, cite, or redistribute without permission

to emerge from the life sciences.11 Moreover, the major economic argument put forward
in the legislative history of the Bayh-Dole Act – that patents on publicly funded invention
would promote commercialization of such invention12 – would appear to apply most
clearly to life science areas like drug development. The conventional wisdom is that,
without the quasi-monopoly protection of a patent on the small molecule chemical, few
firms would be interested in taking a potentially promising drug candidate through the
expensive clinical trial and approval process.13

In the case of publicly funded software, by contrast, the need for a patent and
exclusive license to promote further development is less immediately apparent.14
Although development costs are not uniformly low, they are certainly low relative to
those in the biopharmaceutical industry. Indeed, in certain cases of open source software
development, firms derive revenue not from property rights over the software product
itself but from a strategy that monetizes the value of support services and complementary
hardware.15

Some recent events have suggested, however, that universities might in fact be
interested in strong assertions of proprietary rights over software. In 2004, a district court
upheld a $520.6 million jury verdict in a patent infringement suit against Microsoft
brought by the University of California and its exclusive licensee, Eolas Technologies.16
The software patent in question essentially covers interactive web browsing. Eolas, a
one-person startup run by one of the University of California professors listed as an
inventor on the patent, filed suit on the patent on February 2, 1999, three months after it
issued. And the UC/Eolas lawsuit is not unique. On the contrary, as discussed further
below, we have identified a significant number of cases in which a university, together
with its start-up exclusive licensee, has sued firms (often large incumbent firms) that
appear to have commercialized the technology in question without a need for exclusivity.

11 Rai & Eisenberg, American Scientist 2003 (based on PTO and IPC classifications, about 50% of recent
university patents are in the area of biotechnology and pharmaceuticals); see also MOWERY ET AL. at 99-
111 (collecting data from the University of California, Stanford, and Columbia indicating predominance of
biomedical invention in terms of patents and revenue regeneration).
12 Interestingly, the text of Bayh-Dole does not prescribe, or even encourage, a particular licensing model.
However, the legislative history of the bill that eventually became the Bayh-Dole Act, as well as that of
similar bills that were being discussed at the time, indicates a focus on exclusive licenses. See, e.g., H.R.
REP. NO. 96-1307, pt. 1, at 3, 5 (1980) (noting importance of exclusive licensing for attracting capital
necessary for development); S. REP. NO. 96-480, at 28 (1979) (noting that because nonexclusive licenses
were generally viewed dismissively in the business community, “as no patent protection at all,” only 4% of
the 28,000 patents owned by the government had been licensed to private industry for development).
13 Various empirical studies have underscored the critical role played by patents on end stage
pharmaceutical products. See, e.g., Wesley Cohen et al.., Protecting Their Intellectual Assess:
Appropriability Conditions and Why U.S. Manufacturing Firms Patent (or Not), NBER Working Paper No.
7552 (2000) (discussing the importance of patents relative to other mechanisms of appropriation in various
industries and concluding that patents are, by far, most important in the pharmaceutical industry).
14 Even in the life sciences, the availability of patents on improvements as well as the presence of
absorptive capacity in commercial firms may diminish the need for exclusive licensing. See MOWERY ET
AL. 158 (discussing case of Columbia’s co-transformation technology).
15 See, e.g., A. Bonaccorsi and C. Rossi, Why Open Source Software Can Succeed, 32 RESEARCH POLICY
1243, 1249 (2003) (discussing software publishers like Red Hat as well as hardware manufactures like
IBM).
16 On appeal, the Federal Circuit ordered a new trial concerning the validity of the patent. Eolas
Technologies Incorporated v. Microsoft Corp., 399 F.3d 1325 (Fed. Cir. 2005).

Preliminary Draft: Please do not quote, cite, or redistribute without permission

Universities have, of occasion, had disputes not only with large software firms but also
with open source software developers. In 2001, a group of university bioinformaticians
felt compelled to petition the National Institutes of Health (“NIH”), asking the agency to
mandate that publicly funded bioinformatics software be distributed under an open source
model. At about the same time, reports emerged of individual professors facing
resistance to their attempts to operate their labs under an open source model.

This paper represents the first systematic study of which we are aware of
university software ownership.17 We rely in part on a unique, hand-curated database of
university software patents. Our quantitative analysis focuses on patents primarily
because there is no comprehensive data on the extent to which copyright is asserted by
universities.18 This quantitative analysis is supplemented by interviews conducted with
technology transfer officers (particularly at universities that own large number of
software patents) as well as academic scientists prominent in the open source movement.
Through these interviews, we draw out the policies that major university software
patentees have not only with respect to patents but also with respect to software
ownership more generally.

The combination of our quantitative and qualitative inquiry yields a number of
interesting results. First, software patents appear to represent a significant percentage of
university patent holdings. Second, the factor that has had the biggest effect on software
patenting is not R&D generally, or even computer science R&D in particular, but the
overall “patent propensity” of the university – that is, the tendency of the university to
seek patents.19 These findings are reinforced by our qualitative results. Our interviews
show that some universities view software as similar to other, more physical inventions.
The difficulty with this view is that software may follow a different commercialization
path than other inventions. Thus, it is perhaps not surprising that we see a fair number of
litigated cases involving software patents, and that almost all of these appear to represent
situations where the university and/or its exclusive licensee is asserting the patent against
an entity that has commercialized successfully independent of the patent. The main
rationale for supporting patenting would, therefore, appear to be the promotion of start-up
businesses, presumably on the theory that start-ups, and market-based activities more
generally, are likely to be move innovative than activities in large incumbent firms.
However, whether patents are necessary for start-up promotion is not as clear in software
as it is, for example, in the biotechnology industry. Moreover, in contrast with
biotechnology, where copyright is not available, universities can use software copyright
to achieve revenue generation goals.

17 One study that touches on some related issues is Agrawal and Henderson’s examination of the patenting
practices of MIT electrical engineering/computer science faculty. Based on their research, they conclude
that patenting is a “minority activity” for most faculty members in the EE/CS department (and the
mechanical engineering department). Agrawal and Henderson, Putting Patents in Context: Exploring
Knowledge Transfer From MIT, 48 MANAGEMENT SCIENCE 44 (2002).
18 Copyright attaches as soon as the software is created. Because there is no need to register copyrights, it is
difficult to know the total volume of university software protected by copyright.
19 As we discuss further below, our data require us to treat the “university” as something of a black box.
Thus we can not determine the extent to which patent propensity operates at the level of the researcher,
who is induced by the pro-patent culture to disclose more inventions and push for patents on those
inventions, or at the level of the technology transfer office, which files for a higher percentage of patents on
invention disclosures.

Preliminary Draft: Please do not quote, cite, or redistribute without permission

2. University Software Patents: History and Methods of Identifying

We began by using the USPTO’s Cassis database to identify all patents issued in
1982, 1987, 1992, 1997, and 2002 that were assigned to institutions classified as
Research or Doctoral Universities in the Carnegie Commission of Higher Education’s
1972 or 1994 reports. We chose these particular years because they span a series of
critical shifts in the legal regime surrounding software produced at universities. Over
these two decades, university patenting increased dramatically, from 385 patents in 1982
to 2946 patents in 2002. Patent jurisprudence in the area of software also evolved
considerably during this period. Because this evolution is closely related to the manner
in which we define the term “software patent,” we lay it out in some detail below.

2.1 History

In the 1970s, the dominant intellectual property regime for software was
copyright, not patent. A 1972 Supreme Court case, Gottschalk v. Benson, had appeared
to reject software (in that case a computerized method for converting decimal numbers to
binary numbers) as patentable subject matter on the grounds that patent law did not
encompass abstract scientific or mathematical principles.20 Several years later, in the
1976 Copyright Act, Congress expressly endorsed copyright as an appropriate protection
regime for software.

The IP terrain shifted in the 1980s. In the 1981 decision Diamond v. Diehr, the
Supreme Court gave its first clear indication that certain types of software-implemented
inventions were patentable. Diehr narrowed Gottschalk by upholding as patentable
subject matter a rubber-curing process that used software (specifically, software that
implemented the Arrhenius equation) to calculate cure time. According to the Diehr
Court, the physical transformation of the rubber “into a different state or thing” took the
invention being claimed out of the realm of abstraction. Through the 1980s, the Court of
Appeals for the Federal Circuit followed a test similar to that enunciated in Diehr. Under
this test, if an invention’s claims involved nothing more than an algorithm, then the
invention could not be patented. However, if the claims involved a mathematical
algorithm that was “applied to, or limited by, physical elements or process steps,” such
claims would constitute patentable subject matter. The overall message to patent
attorneys was that software could be patented, but it had to be claimed as something else.

As the patent option was becoming more attractive, copyright was becoming
much less so. In the early 1990s, a series of decisions from regional appellate courts21
made it clear that copyright covered primarily the literal source code of the program.

20 Although Gottschalk is generally considered a subject matter case, the Court may have been equally
concerned with breadth – the patent in question was not restricted to any particular implementation of the
algorithm. In general, as noted above, “pure” software patents of the type at issue in Gottschalk may be
broader than patents covering software embedded in a particular machine.
21 While all patent appeals go to the Federal Circuit, appeals from copyright cases go through the ordinary
process of appeal to the regional courts of appeal.

Preliminary Draft: Please do not quote, cite, or redistribute without permission

Courts saw broader coverage as running contrary to the principle that copyright is
supposed to cover only expression, not ideas or utilitarian functions.

Greater changes lay in store. In the 1994 case of In re Alappat, the Federal
Circuit effectively eliminated the physicality limitation by arguing that subject matter
criteria could be met by showing that the software created a new machine – a “special
purpose” computer – when it was executed. Presumably all software would produce such
a special purpose computer and hence be patentable. Four years later the Federal
Circuit’s 1998 decision in State Street v. Signature Financial Group explicitly rejected
any special subject matter test for software, arguing that software (like all invention) is
patentable so long as it produced a “useful” result. After State Street, there was no need
for even the fig leaf of a physical machine or process.

2.2 Identifying University Software Patents

Given this history, it is perhaps not surprising that identifying “software” patents
is very difficult. Even now, there is no universally accepted definition of what a
software patent is. Moreover, neither the U.S. Patent and Trademark Office (PTO)
classification system nor the International Patent Classification (IPC) system was
designed for the purpose of grouping together patents that might be seen as software.
Both systems focus on specific functions at a very low level of abstraction and are
unsuitable for defining any technology area at a conceptual level. Additionally, even if
these systems were suitable for identifying for defining a technology area, software is a
critical element of inventions in so many disparate fields that it would be difficult to
capture software inventions adequately through a classification system.
 To our knowledge, there have been only a few significant efforts to identify a
large data set of software patents.22 An initial paper by Graham and Mowery23 used the
IPC system in an effort to develop a data set of software patents. Graham and Mowery
did not attempt to define what a software patent was. Rather, they identified packaged
software firms and studied the IPCs of patents issued to those firms. Specifically, they
examined patents in the following IPC subclasses: G06F (subclasses 3,4,7,9,11,12,13,
and 15), G06K (subclasses 9 and 15) and H04L (subclass 9). To further limit this set,
Graham and Mowery focused only on patents owned by one of the top 100 U.S. software
firms, as listed in the trade publication Softletter. In a more recent paper,24 Graham and
Mowery used U.S. Patent classes (343, 358, 382, 704, 707, 709, 710, 711, 713, 714, 715,
and 717), again limiting patents in these classes to those owned by large software firms.
The Graham and Mowery approach is not likely to be significantly overinclusive,
particularly when limited to patents owned by packaged software firms. However, their

22 We exclude from our discussion a recent paper by Iain Cockburn and Megan MacGarvie, which focuses
on patents held by firms in 27 specific software markets. See Iain Cockburn and Megan MacGarvie, Entry,
Exit and Patenting in the Software Industry, NBER Working Paper No. 12563
23 Stuart J.H. Graham & David C. Mowery, Intellectual Property Protection in the U.S. Software Industry,
in PATENTS IN THE KNOWLEDGE-BASED ECONOMY 219, 231-33 (Wesley M. Cohen & Stephen A Merrill,
eds., The National Academies Press 2003).
24 Stuart J.H. Graham & David C. Mowery, Software Patents: Good News or Bad News, in INTELLECTUAL
PROPERTY IN FRONTIER INDUSTRIES: SOFTWARE AND BIOTECHNOLOGY (Robert Hahn, ed., AEI-Brookings
2005).

Preliminary Draft: Please do not quote, cite, or redistribute without permission

approach may be quite underinclusive, missing software patents assigned to other firms
or patents assigned to these firms in other patent classes.25
 Another significant effort to identify a large set of software patents, by Bessen
and Hunt,26 defines “software patent” to include patents on inventions in which the data
processing algorithms are carried out by code either stored on a magnetic storage medium
or embedded in chips (“firmware”).27 Rejecting the use of patent classifications,28
Bessen and Hunt studied a random sample of patents and classified them according to

25 To get a sense of possible Type I and Type errors, we assessed how the two Graham and Mowery (GM)
approaches classified the 2,942 university patents issued in 2002. As shown in Tables 2 and 3, very few of
the patents classified by us as non-software were classified as software by either the GM-IPC approach or
the GM-PTO approach. However, the GM-IPC approach did not classify as software 86% of the patents
we classified as software. Similarly, the GM-PTO approach did not classify as software 82% of the patents
we classified as software. See also Bronwyn Hall and Meghan MacGarvie, The Private Value of Software
Patents, NBER Working Paper 12195 (April 2006) (noting that a comparison of Graham-Mowery with
earlier datasets manually compiled by Allison indicates that an approach that uses patent classifications
misses about 50% of software patents).
26 JAMES BESSEN & ROBERT M. HUNT, AN EMPIRICAL LOOK AT SOFTWARE PATENTS 7-9.
(Fed. Res. Bank of Philadelphia Working Paper No. 03-17, available at <
http://www.researchoninnovation.org/swpat.pdf >.
27 As Bessen and Hunt note, id. at 9, one of the current authors, John Allison, earlier employed a definition
of software patent that excluded firmware, including only inventions in which the code implementing the
data processing algorithms are stored on a magnetic storage medium. See John R. Allison & Mark A.
Lemley, Who’s Patenting What? An Empirical Exploration of Patent Prosecution, 53 VAND. L. REV. 2099,
2110-11 (2000); John R. Allison & Mark A. Lemley, The Growing Complexity of the U.S. Patent System,
82 B.U. L. REV. 77, 89 (2002); John R. Allison & Emerson H. Tiller, The Business Method Patent Myth, 18
BERKELEY TECH. L.J. 987, 1029 (2003). The reasons for using this definition were a combination of initial
doubt and compromise with a coauthor, followed by a need for consistency. Each of those articles made
use of the same data set of 1,000 randomly selected patents issued between mid-1996 and mid-1998. After
a great deal more experience gained from closely reading thousands of computer-related patents, Allison
became firmly convinced that the definition should include firmware. When he used the same set of 1,000
randomly selected patents in a subsequent article, he studied each patent again and reclassified them using a
definition that included firmware. See John R. Allison, Mark A. Lemley, Kimberly A. Moore, & R. Derek
Trunkey, Valuable Patents, 92 GEO. L.J. 435 (2004) (definition not explicitly provided in article). Allison
has used this more inclusive definition in studying almost 20,000 patents issued during 1998-2002 to
almost 1,000 firms appearing in the Software 500 list in those years. See infra __.

28 Bessen & Hunt, supra note --, at 10-11. The Bessen & Hunt definition of a software patent appears to
include patents on inventions that “use” software as part of the invention, but excludes those that “use” off-
the-shelf software:

Our concept of software patent involves a logic algorithm for processing data that
is implemented via stored instructions; that is, the logic is not “hard-wired.” These
instructions could reside on a disk or other storage medium or they could be stored in
“firmware,” that is, a read-only memory, as is typical of embedded software. But we want
to exclude inventions that involve only off-the-shelf software—that is, the software must
be at least novel in the sense of needing to be custom-coded, if not actually meeting the
patent office standard for novelty.
Id. at 8.

Preliminary Draft: Please do not quote, cite, or redistribute without permission

their definition. Using characteristics of patents they found to fit their definition, they
then developed a simple keyword search algorithm to identify software patents.29

There are, however, pitfalls associated with using automated keyword searches.
From Allison’s studies of thousands of computer-related patents, it is clear that the use of
language in the titles, abstracts, written descriptions, and claims of patents, even in those
dealing with the same area of technology, can be highly idiosyncratic among different
patent owners. Moreover, software is a critical part of inventions in so many far-flung
fields that reliance on particular search terms could produce a data set that has both Type
I and Type II errors.30
 Hall and MacGarvie’s recent study on software patent value combines the
methods of Bessen/Hunt and the first Graham/Mowery approach with another method of
their own creation. The additional method they create encompasses patents that fall
within the PTO subclasses to which patents owned by fifteen large software firms are
assigned.31 To assemble their data set, Hall and MacGarvie take the union of the
Graham/Mowery and Hall/MacGarvie approach and intersect it with the Bessen/Hunt
approach. Notably, they then check their results against two sets of software patents
manually identified by Allison in connection with earlier studies.32

Our definition of a software patent is a patent in which at least one claim element
consists of data processing, regardless of whether the code carrying out that data
processing is on a magnetic storage medium or embedded in a chip.33 Not only is it
possible to apply the definition consistently, but it also captures the realities of claim
drafting. It is common for all or most of the elements in a patent claim to cover the prior
art, with only one or perhaps two elements covering the purportedly novel and
nonobvious advance. One finds large numbers of patents owned by computer hardware
makers, for example, the claims of which initially read as though they cover something

29 The keyword search algorithm initially identifies a set of patents that use the words “software,”
“computer,” or “program” in the claims or specification. Patents within the set that contain the words
“semiconductor,” “chip,” “circuit,” “circuitry,” or “bus” are then excluded as are patents that contain the
words “antigen,” “antigenic” or “chromatography.”

30 Bessen and Hunt (BH) also identify substantial degrees of over- and underinclusiveness in the data set
generated by their keyword search. Id. at 9. Table 1 uses university patents issued in 2002 to compare the
BH approach with our own approach. The two approaches yield an approximately similar number of total
patents (396 patents using our approach vs. 415 using the BH approach). However, 51% of the patents our
approach identifies as software are not identified as such by the BH algorithm. Moreover, we classify as
non-software 53% of the patents that BH classify as software. Similarly, one recent study that used
software experts to read a sample of the BH patents asserts that more than 50% represented Type II errors.
Layne-Farrar (2005).

31 Bronwyn H. Hall & Megan MacGarvie, The Private Value of Software Patents, NBER Working Paper
12195 (April 2006), at 13-18.

32 Id. at 15-16.

33 Allison also uses this definition in a collaboration with Ronald Mann that has involved reading every
patent issued from Jan. 1, 1998 to Dec. 31, 2002 to the almost 1,000 firms that appeared in Software
Magazine’s annual “Software 500” list at least once during that five-year period. This list ranks firms
according to their gross revenues in software and services, and includes many firms that are primarily
manufacturers in addition to firms that produce only software.

Preliminary Draft: Please do not quote, cite, or redistribute without permission

like a generic router, printer, magnetic resonance imaging machine, or other hardware,
when in fact the only purported novelty is in one element consisting of a function carried
out by an algorithm. Some of this may be a consequence of the fact that, prior to
Alappat, software had to be claimed as part of a physical invention other than a general
purpose computer.
 An obvious problem with our approach is that it involves the slow and laborious
process of reading patents. Although the decision with many patents is clear, there will
always be a substantial percentage that must be studied with great care.34 Claims are
often quite obtuse, and in the computer field they are frequently broad, necessitating a
close reading of not only independent but also dependent claims and, not uncommonly,
resort to the specification to help interpret claim language. Moreover, a degree of
subjective judgment is occasionally required. However, at least in the case of a relatively
small data set, we believe that increased accuracy more than compensates for time-
intensity and absence of algorithmic criteria readily replicable by automated methods.
We do not claim that our data set of university-owned software patents is perfect, but we
do contend that our error rate is small, certainly far smaller than in any data set acquired
by means of patent classifications or keyword searches.35
 Two final points are in order. First, in a large set of patents it is impossible as a
practical matter to include only those patents in which the only software element (as
contrasted with other elements of the invention) is novel and nonobvious. In order to
restrict ourselves to patent in which the software element was novel and nonobvious, we
would have to have a person having ordinary skill in the art conduct a very thorough
study of the relevant prior art. Even then, the question would still be plagued by a degree
of doubt. But the fact that, under our definition, the data processing must be identified in
a claim element does suggest that software is sufficiently important to novelty and
nonbviousness for the patent claim drafter to include it as a limitation of the claim
(thereby narrowing the claim to some extent). Second, in addition to identifying which
patents out of the more than 7,600 university-owned patents in our sample are software
patents, we also identified a subset of those that may be called “pure software patents.”
These are patents in which the claims consist only of data processing. That is, the entire
invention consists of algorithms. (These sorts of patents could presumably issue with any
frequency only after the Federal Circuit’s 1994 decision in In re Alappat.) This task
required thorough study of each of the patents that had already been identified as a
software patent. Although the process of identifying “pure” software patents was
accomplished with a high degree of accuracy, there was a small number about which
reasonable minds could differ. Thus, for this second stage, we also do not profess to have
achieved perfection, but we do maintain that our error rate is low.

34 However, if one is studying a large population of patents from the computer-related industries, the
percentage that must be carefully scrutinized is far higher than if one is studying a population of patents
across a broad array of fields (as in this paper).

35 Layne-Farrar (2005) reports that when software experts read a random sample of patents from an earlier
set identified by Allison, she found that only 5% represented Type II errors. Although the Layne-Farrar
analysis could not identify Type I errors, we believe that any errors of underinclusiveness in our data set are
similarly small.

Preliminary Draft: Please do not quote, cite, or redistribute without permission

3 University Software Patenting: Quantitative Trends and Determinants

3.1 Overview

Figure 1 shows that university software patenting increased more than ten-fold
over the 1982-2002 period, from 37 patents in 1982 to 396 patents in 2002. Over this
period, the “pure software” proportion of university software patents also increased
dramatically, from 13 percent to 32 percent of all university software patents. (Figure 2)
The latter change is hardly surprising. While the patentability of pure software was
unclear in the 1980s, its status became much more secure in the 1990s. Over these two
decades, university software patenting also grew at a faster rate than university patenting
overall. As a consequence, the software share of university patents rose from 9 percent in
1982 to 13 percent in 2002, as seen in Figure 3.

Table Four lists the 15 universities that received the most software patents in
2002.36 Together, these 15 institutions accounted for 60 percent of all university software
patents issued in that year. The top five institutions alone (MIT, the University of
California, Stanford, Caltech, and the University of Texas) account for over a third (34.2
percent) of all university software patents. The top five patentees also represent the top
five university patentees overall in 2002. However, moving further down the list of the
top fifteen, we see that a number of the top software patentees are not among the top
university patentees overall. The University of Washington (6th in software patenting/15th
in overall patenting), Georgia Tech (8th/20th), Carnegie Mellon (9th/51st), the University of
Rochester (12th/50th) and the University of Illinois (14th/28th) particularly stand out as
institutions substantially more prominent in software patenting than overall patenting.

With respect to the patenting of “pure” software, Table Four shows that the top
three patenting institutions overall also rank among the top recipients of pure software
patents (1st, 2nd, and 4th). In contrast, although Caltech and the University of Texas rank
high in overall software patenting (4th and 5th respectively), they rank relatively low in the
patenting of pure software (23rd and 41st respectively). University of Washington,
Georgia Tech, Carnegie Mellon, the University of Rochester, and the University of
Illinois – mentioned earlier as standing out in software patenting relative to overall
patenting – also stand out with respect to numbers of pure software patents (6th, 3rd, 13th,
14th, and 11th respectively).

As these examples suggest, several factors may affect university software
patenting. First, the amount of software related research and development, and thus the
output of software, may matter. Second, the size of the overall research enterprise may
matter, since software can be developed in many parts of the university. Third, an
individual university’s overall propensity to patent, i.e. the share of research outputs it
patents (either because its researchers are prone to file invention disclosure statements
and push for patents on those disclosures, or because technology transfer officers are

36 To be sure, the 2002 data may be somewhat unusual in that it reflects patent filings that occurred during
the “dot-com” bubble of the late 1990s. However, with a few exceptions, these universities also received
the largest number of software patents over the course of the sampling.

Preliminary Draft: Please do not quote, cite, or redistribute without permission

prone to seek patents), may also affect software patenting.37 Although there are
undoubtedly other factors that affect software patenting – for example, the attentiveness
to the specific question of patenting software in the technology licensing office or among
faculty38 – these are difficult to measure. However, we examine some of these factors in
in our qualitative analyses.

3.2 Simple Regression Analyses

 To generate the relative importance of 1) software-related R&D, 2) overall R&D,
and 3) university propensity to patent, we estimated simple “patent production functions”
relating software patent counts in 2002, 1997, 1992, 1987, and 1982 to characteristics of
each of the 202 Carnegie universities in our sample. Specifically, we collected data on
total research expenditures and computer science research expenditures from the NSF’s
Survey of R&D Expenditures at Universities and Colleges39, and aggregated these data to
create R&D stocks for the 5 year period prior to patent issue.40 We estimated university
patent propensity by measuring the number of non-software patents each university was
issued in each issue year.41 To facilitate interpretation, we took natural logarithms of the
independent variables.42 Since the dependent variables are integer valued, we estimated
negative binomial regressions relating software patents and pure software patents to
research expenditures.43

37 In our quantitative discussion, we can not distinguish between motivations of university technology
transfer officers and motivations of university scientists. We discuss some of these issues in our qualitative
portion of the paper. For a discussion of scale economies in academic patenting and licensing activities,
see D. Mowery and Bhaven N. Sampat. “Patenting and Licensing University Inventions: Lessons from the
History of Research Corporation” Industrial and Corporate Change 2001. See also Azoulay 2005 (finding,
in study of 3884 life science researchers, that the overall “patent stock” of the university where the
researcher is employed has an effect on number of patents held by the life sciences researcher).
38 In the life sciences context, for example, one study that looked at patenting activity for 3884 researchers
found that having co-authors who patent has a positive effect on patenting behavior. Azoulay 2005.
39 This survey is conducted annually by the NSF Division of Science Resources Statistics, and includes
R&D expenditures from all sources of funding. Also helpful for our purposes is the fact that this survey
breaks down funding by science and engineering field and by source of funding (federal and non-federal).
40 Similar results obtain if we aggregate computer science and engineering R&D. Because we sampled on
issue years, and there is a lag between patent application and issue, as well as a lag between research and
patent application, choosing the appropriate lag period was difficult. Accordingly, we experimented with
various windows. All specifications (available upon request) yielded qualitatively similar results.
41 Using non-software patents as a measure of university patent propensity could skew results to the extent
there were universities for which the majority of patents were software patents. In those cases, patent
propensity might appear artificially low. However, one can not use the same variable on both sides of the
regression. Fortunately, software patents did not represent a majority of patenting activity for any Carnegie
university. We did attempt to find data on an additional proxy for patent propensity: the size of the
technology transfer office. However, we were able to find data on size for fewer than half of the
universities in our sample.
42 In some cases, one or more of the right-hand side variables was zero, and the natural log of zero is
undefined. Accordingly, we took natural logs of $1 plus R&D.
43 We could not reject the hypothesis of overdispersion, and thus chose negative binomial models over
Poisson models. However, we obtained qualitatively similar results from Poisson models with standard
errors adjusted to account for overdispersion, and from log-log models estimated via ordinary least squares.
These results are available from the authors on request.

Preliminary Draft: Please do not quote, cite, or redistribute without permission

Tables Five through Nine show the main results from these simple cross-sectional
regressions. In negative binomial models, coefficients on log-transformed variables can
be interpreted as elasticities. Model 1 of Table 5 shows that both computer science R&D
and overall R&D have a positive and statistically significant impact on software
patenting, but that the elasticity of software patenting with respect to computer science44
R&D is much smaller. In particular, a 1 percent increase in computer science R&D
implies a .11 percent increase in software patenting, but a 1 percent increase in non-
computer science R&D implies a .84 percent increase in software patenting.

One explanation for this is that a substantial number of software patents result
from non-computer science R&D, consistent with the argument that software is produced
across the university. Graham and Mowery, for example, have noted that software is
likely to be produced throughout the university.45 Similarly, outside the university
context, commentators have argued that many software patents are held by manufacturing
firms.46

However, it is also likely that universities with more research simply have larger
or more sophisticated technology transfer efforts, and higher propensities to patent for a
given amount of software related R&D. To assess this, Model 2 controls for the total
number of non-software patents issued to the university in 2002. After controlling for
total non-software patenting, the impact of the amount of non-computer science R&D on
patenting drops dramatically, and becomes statistically insignificant. However, computer
science R&D remains positive and statistically significant. Perhaps most notably, overall
patenting has a large and statistically significant impact on software patenting, even after
controlling for overall and computer science R&D. While a 1% increase in computer
science R&D yields a .097% increase in software patents, a 1% increase in non-software
patenting yields a .91% increase in software patenting.

Models 3 and 4 in Table Five show similar regressions with the number of “pure”
software patents as the dependent variable. Perhaps not surprisingly, the amount of
computer science R&D has a much larger impact on “pure” software patenting than on
software patenting overall. In the first specification (Model 3), a 1 percent increase in
computer science R&D implies a .59 percent increase in pure software patents, more than
five times larger than the effect on all software patents. Controlling for the amount of
non-software patenting (in Model 4) reduces this effect somewhat, to .52%, but it is still
much larger than the corresponding estimate for all software patents. On the other hand,
Model 4 also shows that overall non-software patenting (after controlling for non-
software R&D) still has a greater effect on “pure” software patenting. A 1% increase in
number of non-software patents yields a .78% increase in pure software patents.

Table Six shows qualitatively similar results for the 1997 cohort. Perhaps not
surprisingly (given the uncertain status of software patents), results on the importance of
computer science R&D for pure software patents in the 1982-1992 cohorts are more
mixed. However, with the exception of the 1982 cohort, overall patent propensity
remains a statistically and qualitatively significant determination of patenting for both
software and pure software.

45 Graham and Mowery (2003).
46 Bessen and Hunt

Preliminary Draft: Please do not quote, cite, or redistribute without permission

We also estimated a panel version of these regressions for the entire period, with
university and year fixed effects. In this model, the estimated changes in R&D and other
patenting are identified using within university variation over time. Table 10 shows the
results. Notably, the year dummies and positive and their magnitude increases over time,
reflecting the overall growth in university patenting over the 1982-2002 period. Model 1
shows that the main factor affecting overall software patenting is changes in non-software
patenting , with a 1 percent increase in non-software patenting implying a .46 percent
increase in software patenting. The corresponding for pure software patenting is neither
qualitatively nor statistically significant. Moreover, none of the R&D measures in
statistically significant for either software or pure software. This last set of results must
be interpreted with caution, however. Because the panels are short and there is limited
within university variation, it is difficult to draw strong inferences.

3.3 Departmental Origin

To explore the sources of software patenting in greater detail, we attempted to
identify the departmental origin of the inventors on the top fifteen academic software
patentees in 2002. As discussed above, these institutions accounted for 60 percent of
overall academic software patenting in that year.
 These 241 patents had 544 distinct inventors. Based on web searches, we were
able to locate the primary departmental affiliation for 74 percent (400) of these inventors.
Seen another way, these 241 patents include 661 unique inventor-patent dyad. (For
example, if an inventor is included on 3 patents, she generates 3 inventor-patent dyads.)
For 27 percent of these dyads, we could not identify the inventor’s department.
 Table Six shows the top 10 departments for dyads where the department is
known. Slightly less than 30 percent of the inventors are from computer science,
electrical engineering, and joint EE/CS departments. Moreover, consistent with
arguments that software is produced across the university, a number of biomedical
departments are also represented, including Neuroscience, Radiology, and Medical
Physics. Most of the patents from Neuroscience are speech recognition software and
software implemented techniques for training individuals to read and write, and the bulk
of the patents from Radiology and Medical Physics relate to image processing and
radiation therapy techniques. The Robotics Institute (at Carnegie Mellon) and Lincoln
Labs (at MIT) also appear on the top ten list.
 Table Seven shows the analogous table for pure software patents. Perhaps not
surprisingly, more than half of the patent-inventor dyads on pure software patents
emanate from computer science, electrical engineering, or joint CS/EE departments.
Other departments are less prominent in production of pure software patents than they are
in the production of other software patents.
 Overall, these results suggests that university software patents, and particularly
pure software patents, are quite likely to come for computer science and electrical
engineering departments. While this result may be surprising to those who believe that
computer scientists have different attitudes towards patenting than other researchers, we
can not draw any definitive conclusions from this data. To examine the issue properly,
we would, at a minimum, need to examine patenting propensity (patents per R&D dollar)
across a variety of different disciplines. In any event, making generalizations about

Preliminary Draft: Please do not quote, cite, or redistribute without permission

patenting by computer science researchers may be difficult. As the regression results
suggest, and as we discuss further in the next section, there is considerable heterogeneity
across universities in terms of their policies and practices towards software. These
heterogeneous policies may sometimes reflect, and sometimes trump, individual faculty
members’ own preferences.

4 University Ownership Policies

 We interviewed technology transfer managers responsible for software at thirteen
of the fifteen universities that received the most software patents in 2002. We also
conducted interviews with university professors and graduate students prominent in the
open source software movement. Finally, we discussed the general phenomenon of
university software ownership with several technology transfer officers who are widely
seen as having developed pioneering models for university ownership of digital
information.
 According to Gerald Barnett, one of these pioneering individuals (formerly at
University of Washington, now at UC Santa Cruz), university technology licensing
offices that have a long history of patenting tend to see software, including pure software,
through the lens they use for other inventions, particularly in the life sciences.47 In the
life sciences, established technology transfer offices have long generated revenue not
only through exclusive licensing (the model contemplated in the legislative history of
Bayh-Dole) but also through nonexclusive licensing (a model not necessarily
contemplated by Bayh-Dole but one that can generate substantial revenue).

Barnett’s perspective is in accord with results from our interviews with officials at
some major technology transfer offices. Lita Nelsen, director of MIT’s technology
transfer office notes (speaking of pure software),

[I]f there are no strong feelings on the part of the authors to open source their work, we
will look at it like any other invention: is it worth investing time and, when appropriate,
patent money to try to license the software out (either as simple end use license or to a
distributor or startup company to improve and distribute it.)48

Barnett’s view is also in accord with our regression results, which indicate that overall
university patent propensity strongly influences both overall and pure software patenting.
As noted earlier, the top 5 software patentees (MIT, UC, Stanford, Caltech, and
University of Texas) are also the top 5 overall patentees. Notably, none of these five was
in the top five in computer science R&D spending for the years 1996-1998.

However, of these five universities, two – Caltech and the University of Texas –
do not have significant numbers of pure software patents. (Caltech and the University of
Texas ranked 23rd and 41st respectively.) At the University of Texas, the reason for this
dearth of pure software patents may be attributable to the view, explicitly adopted by UT
technology transfer officials in response to complaints from computer science faculty,
that faculty should be allowed freedom to share their work as they wanted. Such freedom

47 Interview with Gerald Barnett, October 2, 2003.
48 E-mail communication from Lita Nelsen, July 27, 2005 (emphasis added). According to Nelsen,
software patents tend to be worth patenting when the primary value is in the algorithm.

Preliminary Draft: Please do not quote, cite, or redistribute without permission

includes express permission to use the GNU General Public License, a “viral” open
source license under which source code is open to all but those who redistribute the
software must also make any modifications they have made to the source code available.
This policy was adopted in the 1990s and would therefore have affected the number of
pure software patents that issued in 2002.49 The explanation for Caltech’s small number
of pure software patents is less transparent. Because we were unable to speak with the
technology licensing office,50 our knowledge of the Caltech situation is based on reports
from scientists who work there. According to one prominent open source software
developer at Caltech, most software is for internal, in-house use and is probably not even
reported to the technology transfer officer. For software that is reported, the faculty
researcher decides how the software should be exploited. The technology transfer office
is not only familiar with open source but is apparently quite eager to use the viral GPL
license.51 This is apparently because using the GPL license allows for the future
possibility of forking, with one fork continuing to be available without charge via the
GPL and the other fork converted into a non-viral license for which corporate client
might be willing to pay.52
 In contrast, the positions of MIT and the University of California are less
explicitly favorable to open source.53 According to Lita Nelsen, MIT allows researchers
to use the open source approach, and even manages their licenses, but this position is not
part of official policy.54 The University of California system has a highly complex set of
positions on open source licensing. This complexity emerges in part from the quasi-
federated structure of the UC system, within which copyright licensing (and hence open
source licensing) is determined by the individual campus. While some campuses, such as
Berkeley and San Diego, are familiar with the open source model, other campuses are
less familiar with the model.55 Complexity is compounded by the fact that various
important campuses, including UC Berkeley, appear to be in the midst of fine-tuning
their policies. As of early 2002, officials from the Berkeley office were quoted as
criticizing the decision, made by Berkeley a decade earlier, in 1992, to release as open
source code the Unix operating system and TCP/IP networking protocol.56 At about the
same time, UC Berkeley computational biologist Steven Brenner encountered some
difficulty in negotiating to release his lab’s software under an open source license.57 In
late 2003, Veronica Lanier of the UC Berkeley licensing office stated that if the software
embodied a patentable algorithm, the default approach would be patent rather than open

49 Interview with Georgia Harper, Office of General Counsel, University of Texas
50 The Caltech staff refused requests for an interview.
51 Interview with C. Titus Brown.
52 Id. Example of MySQL
53 Where Stanford University fits in the picture is not clear. Stanford did not adopt an explicit policy in
favor of open source until 2004. It adopted this policy in response to a number of requests received from
professors. Interview with Kathy Ku. However, Stanford has long had a policy allowing professors to put
their inventions into the public domain if they so desire. Cite to Stanford IP policy.
54 Interview with Lita Nelsen, August 8, 2005.
55 Interview with William Decker, UCSD (noting that Berkeley and San Diego often use open source
licenses but that other campuses are not). Cf. Interview with Joel Kirschbaum, UCSF (noting that although
his office does not use open source, they often make executable code available to academics free of charge)
56 Jeffrey Benner, Public Money, Private Code, Salon, January 4, 2002 (quoting Bill Hoskins)
57 Interview with Steven Brenner, March 2004.

Preliminary Draft: Please do not quote, cite, or redistribute without permission

source.58 By 2004, however, UC Berkeley had announced a policy that appeared to give
a much stronger endorsement to the open source model. In this new policy, the Berkeley
technology transfer office states that it will work with researchers who want to release
their code under an open source model.59 Although it is not clear whether researchers
have the final say in cases of conflict (e.g. if the office believes the software will be
commercially valuable and wants to patent or copyright using a commercial license) the
new policy appears to be encouraging towards open source. Berkeley has also
developed, and encourages researchers to use, an “academic” license, under which source
code is made available free of charge to academic and non-profits and made available for
a fee for commercial use. In general, the new Berkeley policy appears to encourage the
possibility of releasing software (and/or underlying source code) under different types of
licenses for different purposes.
 As noted earlier, five universities – University of Washington, Georgia Institute
of Technology, Carnegie Mellon, the University of Rochester, and the University of
Illinois – rank substantially higher in software/pure software patenting than in overall
patenting. The first three of these schools have unique characteristics that may explain
their high levels of pure software patenting. At the University of Washington, a separate
technology licensing office, now called the Digital Ventures office, is responsible for
managing pure software (and digital products more generally). University of Washington
appears to be the only university in the country with an office specifically devoted to
software. This office now has 7 full time professionals as well as 2-4 part-time students.
As for Georgia Tech, its level of computer science R&D funding relative to other funding
is quite high – it ranks 5th in computer science funding and only 32nd in other funding.
Finally, Carnegie Mellon ranks 2nd in computer science funding and 87th in other funding.
Carnegie Mellon is also home to the Software Engineering Institute (SEI), a research
consortium founded by software firms. Patents from SEI are assigned to Carnegie
Mellon, and the software firms in the consortium receive an automatic, royalty-free
license.60
 Notably, although University of Washington, Georgia Tech, and Carnegie Mellon
have a significant patent presence, they do promote other models of software ownership.
At the University of Washington, 90% of the revenue brought in by its Digital Ventures
office in FY 2005 came from copyright licensing. Perhaps not surprisingly, the Digital
Ventures web site features a large variety of unpatented software that can be secured for
commercial use through an on-line license with a standard rate. Like Berkeley, the
University of Washington also encourages “forking” in its licenses i.e. licenses in which
software (and/or source code) is made available free of charge for certain uses and
available for a fee for other uses. Georgia Tech’s Kevin Wozniak estimates that he
oversees a few dozen open source-type software licenses each year. He also notes that,
given the short technology life cycle in the software industry, algorithm patents are often
not very valuable. Finally, at Carnegie Mellon, the current technology transfer team

58 Interview with Veronica Lanier, October 14, 2003
59 Office of Technology Licensing, UC Berkeley, Frequently Asked Questions,
http://otl.berkeley.edu/about/faqs.php (discussing open source options available on Berkeley’s software
disclosure form).
60 Interview with Carl Mahler

Preliminary Draft: Please do not quote, cite, or redistribute without permission

almost never patents unless another entity (in their case, often SEI) is willing to pay for
such patenting.

5 University Software Ownership: A Policy Analysis

The results above suggest that universities have become more active patentees of
software, including pure software. They have availed themselves of the opportunities
afforded by Federal Circuit decisions in the 1990s. Moreover, academic software
patenting behavior with respect to overall software and pure software is strongly affected
by overall patent propensity. From a private point of view, this correlation may make
sense, especially if the reason for the effect is scale economies at the technology transfer
office. To the extent such scale economies exist, they are likely to lower the private
marginal cost of patent acquisition. From a social point of view, however, patenting
based on scale economies is problematic. Ideally, we would want decisions about
whether to patent publicly-funded academic research to be based not only on the private
marginal costs of patent acquisition but on whether a patent is needed to facilitate
commercialization in a specific case, which is likely to vary across inventions and fields.
To put the point another way, a lack of differentiation between software and other
research could be problematic, as the optimal mode of university-industry technology
transfer is likely to vary by industry and invention.61 Indeed, as we have suggested
above, the theory espoused in the legislative history of – that patents and exclusive
licenses are necessary to create incentives for firms to develop and commercialize
“embryonic” university inventions—does not apply neatly in software, where
development costs are often low.62

Another major argument often advanced in favor of patents is that the prospect of
licensing royalties induces university researchers to work with industry licensees and
thereby transfer tacit knowledge necessary for commercialization.63 Although this
argument could in theory be compatible with exclusive or non-exclusive licenses, the
assumption tends to be that an academic researcher would have sufficient time for an
exclusive licensee only. However, in comparison to the life sciences, software
(particularly pure software) is an area of invention where knowledge is likely to be

61 See, e.g, Colyvas et al. 2001. In addition to differential incentive effects, university patents and licenses
have different informational effects across different industries. Of particular relevance to our study, the
comprehensive Carnegie-Mellon survey, conducted on a broad range of large and small firms in the early
1990s, indicates that outside of the pharmaceutical and biotechnology industries, industrial R&D managers
rate patents and licenses very low relative to other sources of information on public research (e.g.
publications, conferences, informal interaction with university research, and consulting). Cohen, Nelson,
and Walsh (2002). Even within the pharmaceutical industry, patents and licenses were less important than
research publications and conferences.
62 To be sure, such costs may be higher in situations where the software is not “pure software.” However,
even in those cases, to the extent that the novel or nonobvious element is probably software, development
costs are probably still low relative to the biopharmaceutical industry.
63 The evidence generally cited for this argument is survey data presented in Jensen and Thursby (2001).
The Jensen and Thursby survey of 62 technology transfer offices found that TTO managers thought that
inventor involvement was often important in the commercialization of inventions. Presumably patents and
licensing royalties represent the most efficient contractual mechanism for inducing transfer of tacit
knowledge. For discussion of this issue, see Arti K. Rai, Collaboration, Innovation, and the Firm (working
paper 2006).

Preliminary Draft: Please do not quote, cite, or redistribute without permission

relatively codified. Object-oriented programming is based on principles of modular
design, and one of the reasons that open source methods of software production have
been successful is that the development task can be broken up into modular pieces that
are then reassembled.64 So the need for transfer of tacit knowledge may not be as
pervasive as it is in the life sciences.

Indeed, in some well known cases, such as the Eolas case noted earlier, it appears
that the university patent allowed the university and/or its exclusive licensee to extract
rents from other firms without aiding in technology transfer. In the Eolas case, it does
not appear that Microsoft’s commercialization was aided by the activities of UC/Eolas.
Rather, Microsoft and other firms began to use the browser technology at issue in the
case well before the patent issued.65 In order to study the litigation question more
systematically, we conducted two, somewhat related empirical inquiries. First, we used a
variety of different search methods to collect case studies involving university software
litigation.66 Second, we determined whether the software patents in our sample were
litigated at rates higher (or lower) than the non-software patents in our sample.67

There was no statistically significant difference in rates of litigation between the
software and non-software patents in our sample. However, we did find a nontrivial
number of cases in which university software patents appeared to have been used in a
manner that arguably hindered rather than promoted commercialization. Research
Corporation Technologies (“RCT”), a firm that is the assignee of patents from the
University of Rochester, has actively pursued litigation on a group of six patents covering
the so-called Blue Noise Mask printing technology. This technology, which was
developed at the University of Rochester and assigned to RCT under a technology
evaluation and commercialization agreement dating back to 1953, allows for high-quality
“half-tone” printing, is used by firms ranging from Hewlett Packard to Microsoft. The
firm’s web site emphasizes the patent suits it has brought against HP, Epson, and
Microsoft and “invites current and potential users of this landmark technology to contact
us about licenses under RCT's patent rights.”68 The lawsuits against HP and Epson were
settled in 1999 and 2002 respectively. However, in a suit against Microsoft, a district
court in Arizona founds that three of the six patents asserted by RCT were invalid and
that another three were “unenforceable due to the patent applicants’ inequitable conduct
in withholding material information from the Patent Office with an intent to deceive the
Patent Office.”

64 von Hippel; other open source theorists
65 According to the UC Berkeley web site, Microsoft and other firms were selling the technology by the
time the patent issued.
66 Specifically, we gleaned our cases from four sources: 1) searches of the USPQ database for the university
was a party to the litigation; 2) searches of the USPTO Litalert database for cases where a university was a
litigation party; 3) searches of general news databases for discussions of university-related patent litigation;
4) running the patent numbers for all university software patents against the LitAlert database. When we
found cases of interest, we used PACER docket records to supplement our inquiry. In general, our
discussion of cases is unlikely to be underinclusive. The USPQ database is underinclusive to the extent
that it contains information only about cases from which a written order has emerged. Although the
LitAlert database is supposed to include all cases involving a patent, it actually includes a little over half of
such cases. So our collection of cases is probably underinclusive.
67 To make this determination, we ran the patent numbers for all university patents in the years we sampled
(1982, 1987, 1992, 1997, 2002) against the LitAlert database.
68 http://www.rctech.com/licensing/lic-blue-noise-mask.php (visited June 4, 2006)

Preliminary Draft: Please do not quote, cite, or redistribute without permission

Additionally, MIT and its exclusive licensee Akamai were recently involved in
lawsuits against two firms, Speedera Networks Inc. and C&W Wireless Internet Services,
that allegedly infringed the MIT/Akamai patent on software for decreasing congestion
and delay in accessing web pages on the Internet.69 The Akamai technology, which was
launched in 1999, at the height of the “dot-com” boom was similar to technologies
developed by other firms before Akamai. Indeed, the defendant in one of the cases,
C&W Wireless Internet Services, Inc., used software that differed from Akamai’s only in
its location.70 The patent was found valid and infringed by the district court, leading to
the grant of a permanent injunction. On appeal, however, the Court of Appeals for the
Federal Circuit determined that the broadest claims of the patent were anticipated by the
C&W software.71 The lawsuit against Speedera also involved claims, denied by
Speedera, that its chief technical officer was stealing proprietary marketing information.
According to industry observers, the litigation left “outsiders shaking their heads at legal
battles that seem to be accomplishing little for anybody, but are draining the resources of
the companies involved.”72

In other cases, the university patent has been asserted for large damage awards
(usually for the statutory maximum of six years of past infringement) soon before it is
about to expire. In one much-discussed lawsuit, MIT and an exclusive licensee,
Electronics for Imaging, sued 92 firms, including Microsoft and IBM, alleging
infringement of a patent covering image editing software. This lawsuit was filed in
December 2001, six months before the patent was set to expire. The technology in
question is a color imaging method that can be applied to any system that produces color
pictures.73 Similarly, in March and May 2005, a few months before the relevant patent
was due to expire, the University of Texas filed three lawsuits against a total of 42
electronics manufacturers alleging infringement on a patent on software that allows text
messaging through a standard telephone keypad. In some cases, the patent in question
may not be due to expire immediately, but it is nonetheless relatively old. In 2002,
Cornell sued Hewlett-Packard over a 1989 patent obtained by a Cornell professor for a
technique that accelerates a computer’s processing speed.74 A 2001 suit by MIT against
Lockheed-Martin involved a 1989 patent on systems for analyzing acoustic waveforms.75

In all of these cases, commercialization by firms other than the university licensee
was going forward, i.e., it does not appear that patent rights or exclusive licenses were

69 See Akamai Technologies, Inc. and MIT v. C&W Internet Services, 344 F.3d 1186 (Fed. Cir. 2003)
(discussing patent and reversing in part district court’s permanent injunction, based on finding that patent
was valid and infringed).
70 Id. at 1193 (quoting Akamai brief noting this point).
71 Even the narrower claims were found valid only because the Federal Circuit required C&W to establish
that there be a “suggestion or motivation to combine” prior art references. Many scholars have taken issue
with the Federal Circuit’s “suggestion” test. See briefs in KSR v. Teleflex.
72 John Borland, Once-Hot Net Business Crippled by Feuds, CNET News.com, August 26, 2002
73 In April 2002, MIT and EFI expanded their complaint to include 214 defendants. In the course of
litigation, plaintiffs settled with some defendants and dismissed their claims against others, so that only
four remained: Corel, Microsoft, Roxio, and MGI software. MIT v. Abacus et al., __ F.3d __ (Fed. Cir.
2006). As discussed further below, the Federal Circuit recently overturned a district court claim
construction that favored the defendants in this case. Id.
74 See Cornell Univ. v. Hewlett-Packard Co., 313 F.Supp.2d 114 (2004) (claim construction)
75 Massachusetts Institute of Technology v. Lockheed Martin et al., 251 F.Supp.2d 1006 (D.Ma. 2003)
(granting defendant’s motion for summary judgment on noninfringement).

Preliminary Draft: Please do not quote, cite, or redistribute without permission

necessary to facilitate “technology transfer.” Moreover, there is no evidence in these
cases that the other firms’ development efforts were “free-riding” on licensees’
investments. Contrary to the spirit of Bayh-Dole, in these cases patents allowed
universities to extract rents, and perhaps even to “hold up” development efforts.76

Even if patenting and exclusive licensing of software does not facilitate
commercialization per se, it could be argued that it provides a spur to small firm start-ups
that market technology inputs.77 Strong property rights arguably benefit small firm start-
ups by serving as a defense against misappropriation when start-ups market their
technology.78 With these strong rights, start-ups may also be able to customize
technology inputs for the firms that absorb these inputs. More generally, to the extent
that market-based arrangements are likely to be more innovative than large, vertically
integrated firms (or at least disseminate information more widely than do such firms),
promoting these start-ups could be a valuable goal.

The difficulty with vertical “dis-integration” is that creates the potential for large
transaction costs, including hold-up. Moreover, even assuming that the general argument
for vertical dis-integration has merit, the force with which it applies to software is not
clear. While most small biotechnology firms have patents, a recent study by Mann
indicates that most software start-ups that receive venture financing do not in fact have
patents.79 Moreover, although a subsequent study by Mann and Sager suggests that start-
up software firms with patents tend to do better on various metrics of financing and
investment than start-up software firms without such patents, the disparity is much less
significant than the disparity between biotechnology firms with and without patents.80 At
a minimum, the “generating start-ups” argument for software is less compelling than it is
for biotechnology.

Rent extraction from firms that have commercialized successfully may be a
particular concern where the case is ultimately a weak one. Indeed, where the patent in
question is weak, even ex ante licensing arrangements are arguably socially inefficient.81
In other words, in the case of weak patents, even if the university and its exclusive
licensee had attempted to license ex ante, such licensing would arguably be socially
inefficient. Thus it is notable that in a number of litigated cases, the university’s
argument has been unequivocally rejected. The University of Texas recently lost a case

76 The issue of hold-up of a downstream innovator with sunk costs has been much discussed in the
innovation literature. See, e.g., __.
77 Arora and Merges, Specialized Supply Firms, Property Rights, and Firm Boundaries, 13(2) Industrial an
Corporate Change 451 (2004); see also ASHISH ARORA ET AL., MARKETS FOR TECHNOLOGY. Although
Arora and Merges do not discuss university-generated research, the logic of their argument – that strong
patents may have the beneficial effect of encouraging the formation of specialized supply firms – applies to
such research. Additionally, various scholars have argued that patents can serve as signals that enable
small firms to attract venture capital. On this view, at least certain patents are a signal of managerial
competence. Lemley (2001) Long (2002); Mann (2005). In any event, it is clear that start-ups often take
exclusive licenses to patents. According to AUTM, about 95% of licenses to start-ups are exclusive.
78 Id.
79 According to Mann (2005), 80% of software start-ups that received venture financing in 1998-99 did not
have patents as of 2003.
80 Mann and Sager, at 21-22.
81 Lemley and Shapiro (2006) provide a detailed argument for this proposition. They show that ex ante
licensing may yield inefficient royalty rates where the patent is weak but injunctive relief is the likely
remedy for infringement and “inventing around” is difficult.

Preliminary Draft: Please do not quote, cite, or redistribute without permission

involving patents on positron emission technology (PET), a medical imaging technology
that uses gamma rays to detect cancer, heart disease, brain disorders, and other health
conditions. UT claimed that CTI Molecular Imaging Inc., a leading provider of positron
emission tomography (PET) equipment infringed two of its patents on PET technology.
In that case, both the district court and the Federal Circuit held that the defendant did not
infringe.82 Similarly, in a recent suit brought by the University of California and its
exclusive licensee over patented software for eliminating edge artifacts when
compressing digital images, both the district court and the Federal Circuit found that the
patent in question was not only invalid but also not infringed.83 In 2003, a lawsuit by the
University of Illinois against Fujitsu on software patents relating to plasma display panels
resulted in a summary judgment determination that the patent was invalid.84 In contrast,
our search found only one case in which a university’s claims regarded its patented
software were largely vindicated by the court system, either in a final district court
decision that was not appealed or in an appellate court decision.85

Of course, each of these cases was the subject of litigation, and unlikely to be
representative of all university software patents. There are certainly cases of successful
commercialization where the firm in question did have an exclusive license to a
university patent. The firm Google, which was the exclusive licensee of a patent
assigned to Stanford, is a prominent example, as is RSA Security, the exclusive licensee
of various data encryption patents assigned to MIT.86 Moreover, university software
patents do not appear to be litigated significantly different from those of university
patents in other fields. Thus we can not state unequivocally that the incidence of hold-up
in the software patent context is higher than that for university patents in other fields.87
Nonetheless, there is reason to believe that hold-ups are more likely to be common in
software than other fields, mainly because, as discussed above, patents/exclusive licenses
are less likely to be important for commercialization in this field than others. To put the
point another way, the ratio of false positives (patenting and giving an exclusive license
when it is not necessary for commercialization) to false negatives (failing to patent and
give an exclusive license when it is necessary for commercialization) is likely to be
higher in software than in the life sciences. In this regard, it bears mention that various
important cases of software commercialization have not involved patents and exclusive
licenses. For example, a number of unpatented Stanford programs have been widely
adopted by industry. Both MINOS, a linear and nonlinear optimization program, and
Genscan, a gene structure prediction program, have been licensed for many years to

82 164 Fed. App. 982 (2005). There was no need to rule on the defendant’s invalidity challenges.
83 LizardTech. Inc. v. Earth Resource Mapping Inc., 424 F.3d 1336 (Fed. Cir. 2000).
84 Competitive Technologies v. Fujitsi, 286 F.Supp.2d 1161 (N.D.Cal. 2003).
85 MIT v. Abacus (Fed. Cir. 2006). There were a number of cases in which the parties appear to have
settled prior to a final, appealable order by the district court.
86 Whether a patent and exclusive license was particularly important to commercial success in these cases is
unclear, however.
87 A recent example of hold-up in the life sciences arena might be the case brought by Ariad
Pharamaceuticals, the exclusive licensee of a broad Harvard/MIT patent, against Eli Lilly. Ariad
Pharmaceuticals recently secured a large jury verdict in that case. Cite

Preliminary Draft: Please do not quote, cite, or redistribute without permission

dozens of different commercial firms.88 Stanford has licensed other unpatented software
to firms that have independently developed the software for sale to their own customers.89

Finally, to the extent the university interest in revenue generation is seen as
legitimate---presumably because some of the revenue goes back into research---the
alternative of ex ante non-exclusive licensing at low rates might be seen as a mechanism
for satisfying university interests while minimizing potential harms. Although non-
exclusive licenses are something of a tax on commercialization, a small royalty rate is
unlikely to deter most commercialization. In some cases, universities may be reluctant to
license non-exclusively because they must incur the immediate cost of filing for a patent.
(In contrast, exclusive licensees typically pay for patent applications.) Notably, however,
software is unlike virtually every other university invention because patents do not have
to serve as the foundation of the licensing scheme. Copyright, which attaches without
cost upon creation of the software, will do the job. For this reason, at least some
technology transfer offices say that they are beginning to shy away from seeking patents
for the purpose of non-exclusive licensing. At the University of Washington, for
example, the Digital Ventures office says that it takes a “hard look” at patenting and will
use it only if there is a real need to improve the technology (presumably via an exclusive
license). Digital Ventures has also convinced startups to “go without a patent.”90 Non-
exclusive copyright licensing can be quite lucrative for universities. MINOS, which is
available via a non-exclusive copyright license, is one of Stanford’s largest money
generators.91 Moreover, as noted earlier, in FY 2005, the UW Digital Ventures office
made 90% of its revenue from copyright licensing.

Because copyright has been interpreted by the courts to cover little more than
literal source code, it generally confers little in the way of monopoly power. Moreover,
in copyright law, unlike patent law, independent creation is a defense to a charge of
infringement. For this reason, commentators concerned about the negative effects of
proprietary rights have properly focused on software patents. At the same time, firms are
willing to license software because they do not want to bear the costs of independent
creation. However, even nonexclusive copyright licensing with relatively low fees can be
problematic for non-profit researchers. Thus, universities that want to balance the goal of
academic access with that of revenue generation, such as the University of Washington,
are assessing which licenses and royalty structures are appropriate for which situations.
The TTOs at UW, the University of California, Berkeley, and Stanford have all embraced
the idea of forked licenses that give relatively inexpensive access to the non-profit sector
but allow for revenue generation from the commercial sector. Indeed, one of Stanford’s
largest revenue generators in software, the MINOS business software program is
available via a forked copyright license: the commercial fork costs more than ten times as
much as the academic fork.

The related question of using copyright to promote “open source” within the
university is an interesting one. As we have noted, some universities have embraced open
source, and these universities tend to have smaller number of pure software patents. But
even among technology transfer officials sympathetic to the goals of open source, a

88 Software Licensing in the University Environment, Computing Research News (January 2002).
89 Id.
90 E-mail communication from Chuck Williams, September 2, 2005
91 Interview with Kathy Ku

Preliminary Draft: Please do not quote, cite, or redistribute without permission

number mention difficulties that open source may create in the university setting. For
example, faculty may prefer open source as a method of distribution not because of
ideological commitment but because open source-related consulting revenues, unlike
licensing royalties, don’t have to be shared with the university.92 Indeed, at least one
prominent technology transfer officer (who preferred to remain anonymous) believes that
some faculty make software open source for the purpose of attracting widespread interest
but have every intention of asserting proprietary rights over the source code at some later
point.93 Additionally, software is often developed by groups, and TTOs sometimes find
themselves in the middle of disputes among group members about the best open source
mechanism to use (or, indeed, whether open source should be used at all).94 TTOs are
also wary that particular types of open source licenses will conflict with obligations to
sponsors, including the federal government under Bayh-Dole.95 Thus, to the extent
funding agencies are interested in an open source approach because they think such an
approach is likely to produce better software, they need to be aware of possible
institutional impediments.

Conclusion

 Our research indicates that software patents represent a significant percentage of
university patent holdings. Moreover, at least historically (that is, through the late
1990s), software patenting appears to have been linked most closely not with R&D
spending, or even R&D spending in computer science, but with the university’s patent
propensity. From a policy standpoint, this finding suggests a potential problem: because
software – and particularly pure software – is likely to follow a different
commercialization path than invention in the life sciences, patenting and exclusive
licensing of software may yield a higher proportion of situations where the exclusive
licensee attempts to hold up an entity that has successfully commercialized without the
need for an exclusive license. Moreover, even if the goal is not promoting
commercialization per se, but promoting start-ups, exclusive patent licenses are not
necessarily critical to that goal.

To be sure, university practices with respect to software are not uniform. For
example, universities that have policies friendly to open source are less likely to patent
pure software. More generally, a fair number of universities – including universities with
large number of software patents – may now be moving away from patenting and

92 Pat Jones
93 This technology transfer officer did not specify precisely how a faculty member would assert proprietary
rights. In the context of a viral license, one mechanism for doing so would be to “fork” the license. One
prong of the license would remain viral while the other, which was made available to paying customers,
would not be viral in character. MySQL has adopted this strategy. See
http://www.mysql.com/company/legal/licensing/commercial-license.html
94 Chuck Williams; Dana Bostrom; Lita Nelsen
95 In theory, under Bayh-Dole, if the university and researcher choose not to patent, the government has the
option of patenting. Whether a decision to release software under an open source license represents an
unwarranted interference with the government’s option remains an open question, at least in theory. In
practice, however, we are unaware of any situation where a decision to release software under an open
source license has interfered with an agency’s desire to patent.

Preliminary Draft: Please do not quote, cite, or redistribute without permission

exclusive licensing of software.96 However, the lingering impact of a substantial
university patent portfolio, some of which has been licensed exclusively, is being felt in
socially unproductive litigation.

96 To investigate this proposition further, we plan to do further work investigating more recent patent
applications that have resulted in issued patents.

Preliminary Draft: Please do not quote, cite, or redistribute without permission

Figure 1: University Software Patents, By Type and Year

32
58

127

191

269

5

21

51

89

127

0

50

100

150

200

250

300

350

400

450

1982 1987 1992 1997 2002

Issue Year

N
um

be
r o

f P
at

en
ts

Other Software Pure Software

Preliminary Draft: Please do not quote, cite, or redistribute without permission

Figure 2: University Software Patents as a Share of All University Patents

9.6%

11.2%

12.5% 12.7%

13.4%

0.0%

2.0%

4.0%

6.0%

8.0%

10.0%

12.0%

14.0%

16.0%

1982 1987 1992 1997 2002

Issue Year

Preliminary Draft: Please do not quote, cite, or redistribute without permission

Table 1: Comparison of Bessen-Hunt Keyword-Based Classification of Software Patents With Our Classification

Our

Classification
Bessen-Hunt
Classification Non SW SW Total

Non SW 2,325 202 2,527
 92.01 7.99 100
 91.32 51.01 85.89

SW 221 194 415
 53.25 46.75 100
 8.68 48.99 14.11

Total 2,546 396 2,942
 86.54 13.46 100
 100 100 100

Preliminary Draft: Please do not quote, cite, or redistribute without permission

Table 2: Comparison of Graham-Mowery IPC-Based Classification of Software Patents With Our Classification

Our

Classification
Graham-
Mowery IPC
Classification Non SW SW Total

Non SW 2,544 341 2,885
 88.18 11.82 100
 99.92 86.11 98.06

SW 2 55 57
 3.51 96.49 100
 0.08 13.89 1.94

Total 2,546 396 2,942
 86.54 13.46 100
 100 100 100

Preliminary Draft: Please do not quote, cite, or redistribute without permission

Table 3: Comparison of Graham-Mowery USPC-Based Classification of Software Patents With Our Classification

Our

Classification
Graham-
Mowery
USPC
Classification Non SW SW Total

Non SW 2,541 328 2,869
 88.57 11.43 100
 99.8 82.83 97.52

SW 5 68 73
 6.85 93.15 100
 0.2 17.17 2.48

Total 2,546 396 2,942
 86.54 13.46 100
 100 100 100

Preliminary Draft: Please do not quote, cite, or redistribute without permission

Table 4: University Software Patenting, Overall Patenting, And Pure Software Patenting In 2002

 Rank in Patenting (Issue Year 2002)
University Software Overall Pure Software
Massachusetts Institute of Technology 1 2 1
University of California 2 1 2
Stanford University 3 4 4
California Institute of Technology 4 3 23
University of Texas 5 5 41
University of Washington 6 15 6
University of Wisconsin 7 7 8
Georgia Institute of Technology 8 20 3
Carnegie Mellon University 9 51 13
Johns Hopkins University 10 6 11
State University of New York 11 8 20
University of Rochester 12 50 14
University of Pennsylvania 13 13 42
University of Illinois 14 28 5
Columbia University in the City of New York 15 14 10

Preliminary Draft: Please do not quote, cite, or redistribute without permission

 Table 5: Negative Binomial Models of Determinants of Software Patents (Issue Year 2002)

Preliminary Draft: Please do not quote, cite, or redistribute without permission

 Table 6: Negative Binomial Models of Determinants of Software Patents (Issue Year 1997)

Preliminary Draft: Please do not quote, cite, or redistribute without permission

Table 7: Negative Binomial Models of Determinants of Software Patents (Issue Year 1992)

Preliminary Draft: Please do not quote, cite, or redistribute without permission

Table 8: Negative Binomial Models of Determinants of Software Patents (Issue Year 1987)

Preliminary Draft: Please do not quote, cite, or redistribute without permission

Table 9: Negative Binomial Models of Determinants of Software Patents (Issue Year 1982)

Preliminary Draft: Please do not quote, cite, or redistribute without permission

Table 10: Negative Binomial Panel Models of Determinants of Software Patents, Issue Years 1982-2002

Preliminary Draft: Please do not quote, cite, or redistribute without permission

Table 10: Departmental Origin of Inventors on Software Patents Issued to the Top 15 Recipient of Software Patents in Issue Year
2002

Preliminary Draft: Please do not quote, cite, or redistribute without permission

Table 11: Departmental Origin of Inventors on Pure Software Patents Issued to the Top 15 Recipient of Software Patents in Issue Year
2002

Preliminary Draft: Please do not quote, cite, or redistribute without permission

