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Abstract

This paper proposes a mathematical model for a simplified version of the game defined in Hadfield

and Weingast [2012] which proposes that legal order can be described as an equilibrium in third-

party decentralized enforcement coordinated by a centralized classification institution. We explore

the attractiveness of joining a new group (which is assumed to have settled on an enforcement

equilibrium already) where groups differ in terms of the frequency of interactions in which norm

violation is possible (normative interactions) and thus punishment is called for. We show that groups

in which normative interactions are frequent but involve relatively unimportant rules may achieve

higher value for participants.

1 Introduction

One of the attributes that differentiates human from other animal societies is the presence of norms and in particular

norms over behaviors that do not appear to have a material impact on well-being apart from the fact that people will

punish the failure to adhere to a norm. In all known human societies there is a rich normative landscape, which

attaches normative valence to actions including many that have no immediate material implications for those who

are expected to help enforce them through social sanctions. Most societies for example have rules about what it is

appropriate to eat when, what tone of voice to use in what settings, how close to stand to someone else, how to

behave when waiting with others to get into a venue or access to a resource, what information should be shared with

whom and when, who can participate in particular trades or economic activities and so on. In many cases, particular

norms are arbitrary, even though violation of them is treated as worthy of punishment by others. We call this spurious

normativity. Hadfield [1999], for example, reviews the anthropological literature on the sexual division of labor

across pre-industrial societies. While almost all societies categorize work as either women’s work or men’s work, the

particular classifications vary substantially cross-culturally: what is women’s work in one society is men’s work in

another. The classification is arbitrary.1

Fessler and Navarrete [2003] call the process by which patterns of behavior are imbued with moral sentiments that

motivate sanctioning of violations of the pattern normative moralization. They use as an example the normative

moralization of handedness. Most people are right-handed but particularly in societies with few specialized tools,

whether someone is right- or left-handed often has no material consequences for others. Nonetheless, many cultures

treat using one’s right hand as a morally approved category–denoting purity or politeness–and one’s left hand as cause

1Hadfield [1999] shows that there is functionality to an arbitrary classification scheme of enforced norms: it coordinates invest-
ments in specialized learning by gender which raises the value of heterosexual matching in the marriage market.
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for opprobrium–revealing weakness or evil. Fessler [1999] hypothesizes that, driven forward by the emotions of shame

and pride that are triggered by violation or compliance with cooperative norms, culture extends the set of actions that

are subject to normative moralization as a way of extending the set of actions that can be used as information about

cooperation beyond those actions that directly involve cooperation. A norm that says “it is wrong to fail to look

where you are going” generates direct cooperative benefits, helping people to avoid crashing into one another. A

norm that says “it is wrong for a man to walk down the street wearing shorts” does not generate cooperative benefits–

unless people in this society treat conformity to this norm as informative about a person’s likelihood of behaving in

conformity with norms that do generate cooperative benefits. As Fessler [1999] (who identifies the the “watch where

you are going” and “men don’t wear shorts out in public” norms in an Indonesian village) puts this:

Ego’s inclusion in cooperative activity is dependent on her ability to meet Others’ expectations, and

those expectations are, in turn related to shared standards for behaviors which are relevant to coop-

eration. As a consequence, the significant adaptive advantage offered by participation in cooperative

activities generated selective pressure for an increase in the attention paid to these standards. Late

[evolving] second order emotions [emotions that arise in response to others’ first order emotions]

were the vehicle through which this increase in attention was achieved. Moreover, because late sec-

ond order emotions entail a sensitivity to the reactions of all individuals, Ego must be concerned with

her performance vis--vis shared standards when interacting with any other member of her group. It

is only a small step from this situation to one in which the shared standards with which Ego is

concerned are not limited to the question of cooperative activity–once Ego is concerned with how

all Others evaluate her, it is not difficult for shared standards governing other types of behavior to

become salient as well. This is because an Other may extrapolate from situations that do not involve

cooperation to those that do–an Other may think ”if that individual does not follow shared standards

in this context, how can I be confident that he will do so if I invite her to engage in cooperative

activity?”(pre-pub p. 34, emphasis added)

Fessler’s account focuses on the evolution of emotions in response to norm violation (in particular shame) to moti-

vate voluntary conformance with norms. But as Boyd and Richerson [1992] and many others have emphasized, and

Fessler’s own account of shame as a second order response to Ego’s actual or imagined experience of hostility or

criticism from Other triggered by norm violation implies, effective third-party punishment plays a significant role in

supporting norm compliance. Indeed, Mathew et al. [2012] argue that even small-scale cooperation among kin and

close associates may require third-party punishment to achieve evolutionary stability.

In this paper we analyze mathematically the potential benefits of extending normative moralization to behaviors that

are from a material perspective irrelevant or at least of small consequence to most people, that is, the value of per-

vasive and spurious normativity. We ask: does a community generate higher payoffs for participants if it punishes

violation of apparently meaningless rules or if it focuses more narrowly only on norms that are functional in the sense

of generating direct benefits? Intuitively, one might expect that only functional norms that govern behaviors that

matter for payoffs would emerge and stabilize in equilibrium: punishment is costly and why would a society expend

punishment resources on ensuring conformity with rules that have no impact on material well-being? Most analyses

of norms in the law and economics literature assume that norms coordinate outcomes that improve welfare. Sugden

[1986], McAdams [2005] and Myerson [2004] propose, for example, that property rules emerge because they solve

the coordination problems that arise in costly contests over resources (Hawk-Dove games).
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We consider the impact of extending normativity to apparently arbitrary actions on the prospect for sustaining welfare-

improving behavior in an equilibrium social order based on collective third-party punishment. We demonstrate that

communities that extend normativity in this way can generate higher value for participants than those that restrict the

range of normativity.

The intuition of our result is as follows. Communities with pervasive spurious normativity provide agents with plentiful

and cheap opportunities to observe punishment behavior by others. An individual’s willingness to cooperate in a

community–which requires foregoing safe non-cooperative options and exposing oneself to the risk of being exploited–

depends on that individual’s beliefs about the likelihood that the community effectively punishes conduct that harms

the individual. If you are going to risk exposing yourself to harm, you want to know if your community contains

enough people who will punish the perpetrator to give you confidence that harm is reasonably deterred. Assume you

are a newcomer to a community or that the community was recently handed a new set of norms. (Think here of

rule-of-law building efforts in developing countries.) Assume that the community is in an equilibrium in terms of

punishment behavior but you do not know the likelihood of effective punishment of norm violations. Assume also

that the only way to learn about the likelihood of punishment is to observe punishment behavior. You can learn this

information more cheaply if you are given abundant opportunities to observe what happens when there are violations

if the violations that you have to expose yourself to don’t really matter very much. You don’t really care whether men

walk down the street in shorts but by taking a walk yourself you can see how others react to shorts-wearing men and

thus gain information about how they would react to violations you do care about–careless driving for example. Thus,

if you could participate solely as an observer except when your own interests were directly at stake, you would prefer

to live in a world with pervasive even if spurious normativity–abundant opportunities to observe reactions to norm

violations–than one that was narrowly focused on punishing just the stuff you care about. This will still be true even

if you are required to participate in the community–complying with and punishing spurious norms–so long as those

costs, which increase with the pervasiveness of norms, are not too great.

Our results have implications for the evolution and microfoundations of law.

Hadfield and Weingast [2012] present a model that derives characteristic features of law–such as generality, stability,

uniqueness and universality–as attributes necessary to support an equilibrium in which behavior is patterned on the

classifications of behavior articulated by a centralized institution. Enforcement is assumed to come exclusively from

decentralized collective punishment of conduct classified as punishable by the centralized institution; there is no cen-

tralized enforcement apparatus such as the state. This theory of the microfoundations of law proposes, contrary to most

economic and positive political theories of law, which define law as a set of rules enforced by a centralized enforce-

ment apparatus (see Hadfield and Weingast [2014]), that law is an innovation in the mechanism used to coordinate the

same enforcement mechanism that supports other normative social orders–decentralized collective punishment. This

has important implications for our understanding of how law developed and how it can be built in environments where

it is currently lacking.

The equilibrium legal order in Hadfield and Weingast [2012] is supported by a particular specification of beliefs.

Their model posits that an agent (call the agent Ego) treats other agents’ (Others’) failure to punish behavior classified

by the institution as punishable, including behavior that has no impact on Ego’s (or perhaps any agent’s) payoff, as

informative of the likelihood that Others will also fail to punish wrongful behavior that does have an impact on Ego’s

payoff. This belief structure creates an incentive for individuals to participate in collective punishment, potentially

mitigating the free-rider problem in collective punishment. Ego has no incentive to participate in collective punishment
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(the model assumes standard preferences) except to maintain an equilibrium in which behavior that reduces Ego’s long-

term payoff is deterred by the threat of collective punishment. Effectively, an agent’s participation in punishment is

treated as information about that agent’s continued assessment that an equilibrium in which collective punishment is

coordinated by the classifications articulated by the central institution will benefit that agent and hence that the agent

will be willing to incur costs to support the equilibrium.

The classification institution in this model is serving as what Hadfield and Weingast [2012] call an authoritative

steward of a very simple binary partition of behaviors into those that are punishable and those that are not. This can

be interpreted as the construction of a sparse labeling system: lawful and not lawful.2 We can interpret the beliefs

underlying legal order as beliefs about whether people are punishers or not of behavior to which the constructed (that

is, not natural) label ”unlawful” is attached.

Our model here provides a basis for understanding how a simple binary classification scheme that is comprehensive–

covering a wide variety of conduct–can emerge in a setting in which equilibrium depends on 1) voluntary participation

in punishment and 2) a belief structure in which punishment of an action labeled punishable is considered informative

about the likelihood of punishment of other actions labeled punishable, even when the assignment of the label is

potentially arbitrary. We suggest that understanding how such a classification scheme and belief structure can emerge

is critical for understanding the emergence of law.

The strategy of our paper is as follows. We first give an overview of the model and basic notation in Section 2, to-

gether with some technical background from the analysis of multi-armed bandit games and partially observed Markov

decision processes. To build intuition, we then present in Section 3 analytical results for the limiting case in which

Ego bears no cost of complying with spurious norms or punishing their violation. Because the games we analyze

quickly becomes analytically complex but relatively easy to compute once we introduce a positive cost of complying

with norms and punishing their violation, we turn to computational results in Section 4. Section 5 relates our results

to conjectures about the likely growth and stability of communities in which norms are more or less pervasive and in

which a legal institution that reduces ambiguity about norm violations and increases the informativeness of punishing

behavior (by linking disparate rules into a code such that punishment of one rule is informative about the likelihood of

punishment of another) exists.

2 Overview of Model

The basic idea of the model is as follows. Consider an infinitely repeated game setting in which an agent Ego is faced

with the choice in each period of participating or sitting out. If choosing to sit out, Ego receives a payoff normalized

to 0. If Ego chooses to participate, she plays a randomly selected game g with two randomly selected agents drawn

from a population (Others). We model these games in reduced form. In each game, one of the Others is randomly

selected and presented with an opportunity to choose between two actions, one which is classified by a classification

institution L as ”rule violation” and another which is classified as ”not rule violation.” If Other chooses ”rule violation”

the remaining Other and Ego each independently choose either to punish or not punish. Rule violations are deterred

by collective punishment, that is, punishment that requires more than one agent to punish. For example, in Hadfield

2Cooter [1998] also suggests that the effectiveness of law can be understood as deriving from the classification of behavior as
lawful or not. Cooter however presumes the existence of preferences based on this simple binary classification, that is, that at least
some people inherently prefer to avoid actions labeled unlawful. This presumes that a category ”law”, which extends to potentially
arbitrary actions, exists.
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and Weingast [2012] two buyers and a seller engage in repeated contract and performance games. Actions for the

seller are drawn from a set of possible contract performances, some of which are classified as breach and others which

are not breach. A decision by a buyer not to purchase from a third-party seller in one period constitutes punishment,

specifically a boycott. Breach is deterred when the seller expects both buyers to boycott in response to breach. Games

are distinguished by the rule that may be violated. For example, there could be a game in which rule ”watch where

you are going” may be violated and one in which ”men should not wear shorts in the street” may be violated.

We assume, and Ego believes, that the community of Others is playing an equilibrium in the super game that consists

of the sequence of repeated games. Others are of two types, t: punishers (t = 1), who punish anyone who chooses

an action classified by L as a rule violation, and non-punishers (t = 0), who never punish anyone. Let θ be the true

proportion of punishers in the equilibrium. We assume that an Other’s type is observable by the other participants in

any particular game, that is, only in the context of the opportunity for rule violation. We focus on sub-game perfect

equilibria in which the knowledge that two punishers are present deters rule violation.3 (That is, on the off-equilibrium

path where a violation does occur in the presence of an Other of type t, punishment is carried out that imposes costs

on the violator that exceed the present value of benefits from violation.) We do not model how this equilibrium is

generated or supported but we observe that the equilibrium is not destabilized by the presence of non-punishers. We

assume, however, that Ego plays as a punisher, bearing an expected cost c in each round. c can be thought of as the cost

to Ego of signaling that she is a punisher. For simplicity we assume that Ego is never presented with an opportunity

for rule violation.4 Ego’s participation in the game is assumed to be on the margin, with no impact on the equilibrium

played by the Others. Ego is able to observe rule violations, the types of Others and punishments in games in which

she participates.

3 Formal Model Specification

Before providing a formalization of our model we provide a brief overview of the theory of Markov decision processes

and multi-armed bandits.

3.1 Technical Background and Notation

We define a Markov decision process (MDP), M , is a tuple: M = 〈S,A, P,R, δ〉5. S is a set of states. A is a set of

actions. P : S × A× S → [0, 1] is a function that assigns probability to state transitions for each state-action pair. If

Ego is in state, s, and selects action a the probability of transitioning to s′ is given by P (s, a, s′). R is a (bounded)

reward function that maps states, to an interval of R, w.l.o.g., R : S → [0, 1]. δ ∈ [0, 1) is a discount factor that

expresses Ego’s preference for current versus future rewards.

3For an example of such a game, see Boyd et al. [2010]. They present an evolutionary game model in which punishment is a
heritable strategy and deterrence requires multiple punishers. A population with a fraction of punishers can be stable in equilibrium
when punishers can signal that they are punishers at low cost and thus avoid the costs of punishment if there are too few punishers
present.

4It is straightforward to generalize our interpretation of c as the cost of complying with spurious rules to signal Ego’s support
for the equilibrium rules.

5In standard treatments, T is typically used for the transition distribution, we use P here to avoid confusion with our model
specification.
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A solution to M is a policy, π, that maps states to actions, π : S → A. The value of a state, s, under π is the sum of

expected discounted rewards received by starting in s and selecting actions according to π:

V π(s) = E

[ ∞∑
t=0

δtR(st)|s0 = s, π

]
.

The optimal policy, π∗, maximizes this value and we will write V = V π
∗

for the optimal value function. Standard

results show that a unique optimal value function exists[Puterman, 1994].

In a partially observed Markov decision process (POMDP), we additionally define a distribution over observations

(O) for a each state. A policy now maps a history of observations to an action, as the agent does not know the true

state of the world. A POMDP can always be converted into a (continuous state) MDP where each state is a distribution

over states of the world and the transition distribution is defined by Bayesian inference.

An interesting class of POMDPs are multi-armed bandits (MAB). In a multi-armed bandit, an agent is given access to

several distributions. At each time step, that agent must selects a distribution to sample from, and receives a reward

that is equal to the value of the sample.

A multi-armed bandit provides an analytically and computationally tractable model of exploration-exploitation trade-

offs that occur with practical agents. In particular, success in this class of problems requires explicit reasoning about

the impact of information on future decision making quality. Recent applicability to online banner advertising has

led to rapid progress in both theoretical and computational methods for MABs [Auer et al., 2002]. The optimal full

information policy (which knows the distributions of the arms) will always select the arm with the highest mean.

A key result from Lai and Robbins [1985] lower bounds the number of times an optimal (partial information) policy

selects a suboptimal arm in expectation. This result holds for the class of consistent policies: policies where the

probability that the optimal arm is chosen at time t approaches 1 as t → ∞. We additionally require a smoothness

constraint on the MAB distributions.

Proposition 1. [Lai and Robbins, 1985] Let Θ be a class of MAB arms (i.e., a class of distributions) with parameter

θ. Let µ(θ) be the corresponding mean. If

∀θ ∈ Θ,∀δ > 0,∃θ′ 6= θ such that µ(θ) ≤ µ(θ′) ≤ µ(θ) + δ

then, for any consistent policy the expected number of times a suboptimal arm is selected in the first n rounds is

Ω(log n)6.

3.2 Model Description

We define our super game as a tuple: 〈G,Tθ,Π, U, δ, c〉 where G is a distribution over games and Tθ is a distribution

over punishment types t in the population of Others. We will abuse notation somewhat as use T and G to refer to

the support of the corresponding distributions where the meaning is obvious. Π is Ego’s prior distribution over the

parameters of Tθ, and U : G × Tθ → R is a mapping from types and games to immediate payoffs for Ego. The

understanding is that this mapping represents the results of the Others playing their role in the equilibrium. δ is Ego’s

discount parameter for future rewards. c expresses a participation cost. This can be understood as the expected cost of

to Ego of signaling to an Other that she is a punisher.

6If the function g(n) is Ω(f(n)), then there is a positive constant c such that g(n) ≥ cf(n)∀n
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Ego begins in period 1 with perfect knowledge of how actions are classified by L, all payoffs and the distri-

bution of games. Ego does not know the distribution of types of Others but holds a prior which we will specify

shortly. Ego updates her beliefs about the distribution of types using Bayes’ rule. The super game is defined as follows:

An initial game g0 ∼ G is drawn. Then, for each period j:

1. Ego chooses whether to participate or not. If she opts out, then she collects 0 payoff and the next round starts.

2. If Ego opts in, she incurs the cost of signaling that she is a punisher c and a type, tj ∼ Tθ is for the remaining

Other is drawn. If a non-punisher is drawn, a rule violation occurs; if a punisher is drawn, no rule violation

occurs.

3. The agent observes whether a punisher is present and whether a rule violation occurs and collects payoff

U(gj , tj).

4. A game gj+1 ∼ G is drawn for the next round.

We assume that in equilibrium and given the ruleset created by L, there are two types of games from Ego’s perspective:

those to which Ego is indifferent and those that Ego cares about. Games to which Ego is indifferent always generate

a reward of 0 for Ego. Suppose, for example, that a game involves a rule requiring genuflecting by an Other. We

assume Ego realizes no costs or benefits from the Other’s choice about whether to genuflect or not, other than the cost

of signaling that she is a punisher. We will thus use represent the type of Other with an indicator variable that idicates

if she is a punisher for this game.

Games Ego cares about are ones in which Ego receives a positive reward, R if there is another punisher present in the

game and a negative reward −R if there is not. We call these important games. We formalize the set of important

games as follows:

G′ = {g ∈ G|U(g, ·) 6= 0}

U(g, t|g ∈ G′) = (2t− 1)R− c.

We will use EU = Eg,t[U(g, t)|g ∈ G′] to denote the expected utility of an important game. We let s denote the

sparsity of the process generating games: the probability that a game is unimportant.

s = 1− P (g ∈ G′); g ∼ G.

Critically, we assume that the sparsity of games does not alter the (expected) rate at which important games are

presented to Ego. To be concrete, we assume the expected discounted reward obtained from important games is

independent of s. This condition can be attained through a suitably modification of δ as a function of s:

Proposition 2. Setting

δs = 1− (1− s)(1− δ)

ensures that the expected sum of discounted rewards from important games is independent of s:

∀s,∈ [0, 1) Egj ,tj

 ∞∑
j=0

δjU(gj , tj)

∣∣∣∣∣∣ gj ∈ G′
 = Egj ,tj

 ∞∑
j=0

I[gj ∈ G′]δjsU(gj , tj)

∣∣∣∣∣∣ s
 7.

7I[ψ] is the indicator function for the condition ψ.
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Proof. We first show that it is sufficient to ensure that the expected value of δjs is the same given that j is a round with

an important game:

Egj ,tj

 ∞∑
j=0

I[gj ∈ G′]δjsU(gj , tj)

∣∣∣∣∣∣ s
 =

∞∑
j=0

Egj ,tj
[
I[gj ∈ G′]δjsU(gj , tj)

∣∣ s]
=

∞∑
j=0

δjsEgj ,tj [U(gj , tj)|s, gj ∈ G′]Egj [I[gj ∈ G′]|s]

= (1− s)EU
∞∑
j=0

δjs

Where the first line holds by the linearity of expectation, and the fact that gj , tj are independent iid draws from a

stationary distribution. Substituting the form of the infinite geometric series, we see that

EU
1− δ

=
(1− s)EU

1− δs
(1)

is sufficient to acheive our goal. Substituting the form for δs in the theorem statement and reducing shows that this

condition is satisfied.

It can be easily shows that this model describes a class of MABs. If the parameters that describe equilibrium were

known, the decision problem would be trivial. The safe option corresponds to a constant arm, which is a degenerate

distribution. Optimal policies for bandits with constant arms exhibit clear structure: is that if it is optimal to choose

a known option in round j, it will be optimal to choose the known option in round j + 1 as well (Bradt et al.,

1956). The argument is straighforward: if Ego reaches a point at which her estimate of the tradeoff between risking

a negative payoff and learning so as to improve future decisions leads her optimally to choose not to participate, then

her information state can never change and so her optimal choice can never be any different than the current opt-out

decision. Thus, in our game, if Ego ever retires in a round, then she will never participate again. We refer to the

decision not to participate at any point, then, as a decision to retire.

Futhermore, an MAB is an instance of a POMDP, so it the optimal policy maps a distribution over states, a belief

state, to decision between retirement and particpation. We give our agent a Beta prior over this parameter so that the

belief space for our agent is a two dimensional lattice equivalent to Z2
+. Initially, the belief state is (α0, β0) and can

be understood as the state an agent would be in if she had seen α0 punishers and β0 non-punishers. The conditional

probability that a punisher is present in the first game is

pαβ =
α

α+ β
.

Once the games begin, Ego updates the prior beliefs using Bayes’ rule, which in the Beta distribution means adding the

counts of punishers and non-punishers observed to the prior values. In the following, we will use αi(βi) to represent

the number of observed punishers (non-punishers) prior to round i.

A second useful result from the theory of multi-armed bandits is that the optimal policy is a function that maps a

sequence of observations to a decision about retirement. If we restrict to two types, punishers and non-punishers, this

problem is a partially observed version of a Markov decision process where the state is the probability, p, of drawing a

punisher. From the theory of partially observable Markov decision processes (POMDPs), this optimal policy can also

be represented as a mapping from a distribution over p to an action about retirement [Puterman, 1994]. This reduces a

partially observed process to a fully observed deterministic process in belief space.
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4 The Value of Sparsity

Consider first the case in which the participation cost, c, is zero. In this case, Ego only faces a risky choice in periods

in which she is presented with an important game. In all other periods, the per-period the expected payoff of playing

the risky arm is a constant 0. Thus we can also conclude that if Ego retires, she will retire in a period in which she is

playing an important game. In order to maintain the structure of a multi-armed bandit problem, we specify that if Ego

chooses not to participate in an important game then the next game in the sequence is also an important game. We

can think of this as a suspension of the game.8 This rules out the possibility that Ego can simply choose not to play

an important game and then reenter to play unimportant games in the hope of learning more before the next important

game comes along. A decision not to participate is a decision to retire assuming a rational agent.

We let i = 1 represent the state in which there is a punisher present in the game. The value of a state is then

characterized by the following recursion. To simplify notation we let pαi,βibe the probability that a punisher will be

present in the game in the belief state (αi, βi)and we abuse notation somewhat by letting V ((αi, βi); s, δ) represent

the discounted expected value of the super-game with sparsity s and discount factor δs in the state (αi, βi).

We now show a property of the value of perfect information (VPI) in our super-game. The VPI for a state in a decision

processis a measurement of the improvement in decision making as a function of information gathering actions [?]. It

is defined as the amount a rational agent is willing to pay to remove all uncertainty associated with a particular random

variable.

Proposition 3. If the participation cost, c, is 0, then, for any belief state, (αi, βi), and discount rate δ, the correspond-

ing VPI goes to zero as the sparsity ratio goes to 1. That is

lim
s→1

V PI((αi, βi); s, δ) = 0 (2)

Proof. Given θ, it is easy to compute the value of participation:

V (θ) = EU
∞∑
t=0

δt = (2θ − 1)

∞∑
t=0

δt =
2θ − 1

1− δ
. (3)

The optimal full information policy π0 will retire whenever V (θ) < 0. We use V+(θ) = max{V (θ), 0} denote the

value of π0 as a function of θ. The VPI is computed as the difference between the expected value of V+ and the value

of the optimal policy that only uses the history of observations:

V PI((αi, βi); s, δ) = Eθ [V+(θ)| (αi, βi)]− V ∗((αi, βi); s, δ) (4)

We proceed by lower bounding V . V is the value of the optimal policy so it is weakly lower bounded by any arbitrary

policy. A useful candidate is one-step greedy policy, πg , that always participates for unimportant games and retires

in important games if the expected value of participation is negative (disregarding the benefit of new information).

We let τ be the random number of games played before an important game is drawn. τ is geometrically distributed

with success parameter 1 − s. We let np be the random number of punishment actions observed prior to drawing

an important game. The distribution over np will be a binomial distribution conditioned on τ . Thus, the value of

8In any multi-armed bandit game, the decision to stop suspends the game: deciding to return to the game implies making the
risky pull that was rejected previously.
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executing this policy ca be written as a joint expectation under τ and np:

V πg ((αi, βi); s, δ) = Eτ,np
[max {Eθ′ [V (θ′)|(αi + np, βi + τ − np)] , 0} |(αi, βi), s] . (5)

We will be interested in the limit of this value, as s → 1. Before proceeding with that, we note that, from the law of

large numbers, we have Eθ′ [V (θ′)|a+ np, b+ τ − np] will concentrate about V (θ). Thus,

Eθ′ [V+(θ′)| (αi, βi)] = lim
τ→∞

Enp
[max {Eθ′ [V (θ′)| (αi + n, βi + τ − np)] , 0} |τ, (αi, βi)] . (6)

Note that E[V (θ)|(αi, βi)] only depends on the ratio of (αi, βi), so the difference between the left and righthand sides

of 6 is caused by the fact that the maximum must be taken at finitely many ratios (for finite τ ). Furthermore these

ratios are evenly spaced out, so the lefthand side can only increase as τ increases. We can use this to lower bound the

limit of V πg :

lim
s→1

V πg ((αi, βi); s, δ) = lim
s→1

Eτ,np
[max {Eθ′ [V (θ′)|(αi + np, βi + τ − np)] , 0} |s] (7)

≥ lim
s→1

P (τ ≥ c(s)) min
τ ′≥c(s)

Enp
[max {Eθ′ [V (θ′)|(αi + np, βi + τ ′ − np)] , 0} |s, (αi, βi), τ ′]

+ P (τ ≤ c(s)) min
τ ′<c(s)

Enp [max {Eθ′ [V (θ′)|(αi + np, βi + τ ′ − np)] , 0} |s, (αi, βi), τ ′]

(8)

≥ lim
s→1

P (τ ≥ c(s))Enp
[max {Eθ′ [V (θ′)|αi + np, βi + c(s)− np] , 0} |c(s), (αi, βi)] (9)

Using the form of the cumulative distribution of a geometric variable, P (τ ≥ c(s)) = 1 − P (τ < c(s)) = sc(s). We

set

c(s) = − log 1− s

so that lims→1 c(s) =∞, and lims→1 s
c(s) = 1. Combining 6 and 9 with these facts allows us to deduce the following:

lim
s→1

V πgi((αi, βi); s, δ) ≥ Eθ [V+(θ)|(αi, βi)] (10)

Thus, lims→1 V PI((αi, βi); s, δ) ≤ 0. However, we have that, for any s, V PI((αi, βi); s, δ) ≥ 0 by standard prop-

erties of VPI. This shows the result.

Proposition 4. If the participation cost, c, is zero, then for any (αi, βi) such that V+( αi

αi+βi
) > 0, VPI is strictly

positive for s = 0.

Proof. From Lai and Robbins [1985], we have that, for consistent and assymptotically efficient policies, the expected

number of pulls of a suboptimal arm after n rounds is lower bounded by c log n, where c is a positive constant that

measures the similarity of the reward distributions for the arms. This class contains the optimal policy. Thus, we have

that for any finite s,

V PI((αi, βi); s, δ) > 0. (11)

The combination of these two propositions shows that for any (αi, βi), the corresponding value will eventually increase

as s goes to 1. Thus, in the case where participation costs can be neglected, Ego will prefer an equilibrium with a

higher s.
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Figure 1: Plots of a selection of initial belief distributions. Each curve corresponds to a different value of E[θ]. (a)

shows low confidence initial beliefs. In these information states, Ego has seen very little data and so her belief is

very spread out. In these scenarios, we expect sparsity to be helpful because the gap between full information and

partial information is large. Conversly, (b) shows belief distributions after Ego has seen 50 effective samples. The

corresponding distribution is more concentrated, so we expect less positive impact from sparsity.

5 The Cost of Pervasive Normativity: Computational Results

Our results above show that an environment with lots of rules that an agent cares nothing about intrinsically is more

valuable for an agent contemplating participation than one in which the only rules are ones that matter on the merits–

altering Ego’s payoff directly. We assumed, however, that increasing the number of spurious rules is costless to Ego

and of course this is not generally likely to be true. If Ego is going to participate in a community with lots of spurious

rules, Ego is also likely to bear costs, specifically the cost of participating in collective punishment and the cost of

complying with spurious rules. In this section, we relax the assumption that c = 0. Doing so, however, increases the

analytical complexity. We therefore turn to computational methods to explore environments in which Ego enjoys both

costs and benefits from an increase in the number of spurious rules.

To illustrate the effect of participation costs, we select six initial belief states and computed values as a function of

c. Our initial beliefs vary the expected value of θ and the variance of the belief about its mean. We selected initial

states to cover scenarios where the expected values of an important game is negative, positive and equal to zero. In

this work, we chose E[θ] ∈ {.4, .5, .6}. We varied Ego’s confidence in her current estimate by varying the effective

number of samples (α + β) in the initial belief. Figure 1 shows the corresponding beta distributions for our selection

of initial states.

The optimal policy is invariant to scaling of rewards, so we fix P = 1 and let c
P be the independent variable in

our computations. We compute these values with a variant of value iteration that takes advantage of the structure

of the state space. A python script to generate these plots is included as appendix A. We set the parameters of our

computation to allow for at most 10−8 of error in the computation.
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Figure 2: Plots of V ((αi, βi); s, .9) for select initial states. The probability density functions that correspond to these

beliefs are shown in Fig. 1. The one step value of participating in an equilibrium with enforcement is 1 (P = 1).The

increase in value for larer sparsity for low values of c
P shows confirmation of the results in Prop. 3. In comparing

vertically, we can see that sparsity has a larger effects on states with low mean and low confidence: (f) is essentially

unimpacted by sparsity for low c
P while for (a) and (c) participation is suboptimal unless sparsity is positive. The cost

of this sparsity is increased sensitivity to participation costs.
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Figure 2 shows value as a function of c
P for several pairs of sparsity and initial states. We can clearly see the costs

of pervasive normativity: value functions at higher sparsity decreases more quickly and for lower setting of the par-

ticipation costs. This occurs because the number of rounds per important game increases so more participation costs

are paid. In essence, increased participation costs force Ego to pay more for information and so she may prefer an

equilibrium with less sparsity.

As we might expect, the net gain in value from sparsity is larger in belief states with that are very uncertain. For

example, the value function for initial state (30, 20) is essentially invariant to sparsity for low c
P . Similarly, gains

from increased sparsity are more pronouced with low means. Essentially all value in those states is due to improved

decision making abilities from information.

6 Implications for the Microfoundations of Law

Our results have surprisingly powerful implications for the structure of normativity in human communities. [LETheory

readers: we are only sketching these implications for this draft. We anticipate that at least some of them will be capable

of more formal analytic or computational demonstration.]

6.1 Gossip, Silly Rules and Durability

The value of participating in a super-game depends on the expected cost of punishing rule violations relative to the

reward Ego expects if violations of rules she cares about are deterred. The computations in Section 4 indicate that

when expected costs relative to rewards are sufficiently low, ceteris paribus, Ego enjoys higher value in environments

with more rules that she does not care about. This provides an interesting explanation for the observation from

ethnographic studies that simple societies are characterized both by pervasive and apparently spurious rules that are

effectively enforced by low-cost collective punishments. Wiessner [2005], for example documents the use of gossip,

group criticism and mocking as the principal means by which norms are enforced among the Ju/’hoansi Bushmen

of northwest Botswana. In her observations, violations of norms were punished by escalating criticism and rarely

got to the point of physical violence. Assuming that the rewards generated for individuals aggregate to raise group

well-being, our model thus can be read to predict that communities that succeed in securing an equilibrium with many

rules that impose low compliance costs and which are enforced by low-cost means will outperform communities with

fewer rules and more costly forms of punishment.9

6.2 Birds of a Feather

The rewards Ego enjoys when joining a community depend on the rules of that community. In comparing across

communities with comparable forms of punishment, and comparable numbers of rules, Ego will prefer a community

with rules for important games that, when effectively enforced, generate higher rewards, R. We have not modeled

the source of rules in a community but if we suppose that rules emerge that reflect the interests of the members of

a community, this suggests that Ego is more likely to find rules that achieve higher rewards in communities with a

number of agents with similar preferences, that is in more homogeneous communities.

9Our model takes into account Ego’s willingness to bear the higher cost of punishment in more sparse environments. We
assume, but have not shown, that the willingness of Others to punish is not reduced with sparsity–that is, that Others have incentives
comparable to Ego’s.
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6.3 The Emergence of Law

As communities grow more heterogeneous–which they naturally do as they generate value and support greater spe-

cialization through the division of labor–we expect ambiguity about rule violations to increase. Increasing ambiguity

increases Ego’s expected cost of participating in a punishment regime if errors in punishment–failing to punish when a

violation is perceived by an Other and punishing when the Other does not perceive a violation–are themselves treated

as rule violations which produce punishment. This is a feature of the punishment schemes of many communities:

members of the Flemish cloth merchants guild in the 13th Century, for example, included in their rules the provision

that any member who failed to observe a boycott of a buyer who had cheated another guild member was barred from

trading and no guild member was to ”house the goods” or ”keep company” with the non-punisher. Increasing am-

biguity also reduces the expected rewards Ego enjoys in important games because with some probability a violation

perceived by Ego is not perceived as such by Others and hence the probability of a violation increases. Thus the cost

of punishing relative to rewards decreases with decreasing ambiguity. Hadfield and Weingast [2012] argue that the

central function of law is to serve as a unique classification institution, capable of resolving ambiguity about what

counts as a rule violation. Moreover, they show that for a classification institution to effectively secure an equilibrium

of legal order around a given set of rules enforced only by decentralized collective punishment, the institution must

possess legal attributes such as neutrality, openness, clarity, consistency and stability. Our analysis here predicts that

communities that introduce law in the form of a classification institution with legal attributes that reduces ambiguity

will enjoy higher value and greater durability.

6.4 Hammurabi’s Code

One of the key assumptions of our model is that people who punish any rule violation are expected to punish all rule

violations. This is a distinctive feature of the labeling system generated by a legal regime: people are ”law breakers”

or not; they are ”law-abiding” or not. Cooter [1998] proposes that ”law” is a meaningful category and that people

have preferences over behaviors solely on the basis of whether they are labeled ”lawful” or not. Our model captures

this idea by treating observation of punishment behavior in the context of any rule as informative of the probability of

punishment in important games. The model can be interpreted as representing, for example, a community in which

legal order is coordinated around a single legal code. Hammurabi’s Code from ancient Babylon, for example, consisted

of 247 individual rules, such as ”If any one hire an ox or an ass, and a lion kill it in the field, the loss is upon its owner”

(Rule 244) and ”If any one open his ditches to water his crop, but is careless, and the water flood the field of his

neighbor, then he shall pay his neighbor corn for his loss” (Rule 55). These rules likely emerged individually over

time. We can imagine that knowing whether someone punished Rule 244 may or may not have helped to predict

whether they would also punish Rule 55. But when Hammurabi placed all 247 together on a stone pillar and named

the collection as his Code, he created the possibility for the emergence of two types of people: those who punished

violations of the Code and those that did not. Our analysis suggests that the creation of collections of rules, rather

than disparate rules, can generate value. Suppose, for example, that Ego cares about five rules, enjoying rewards when

violations of each of them is deterred. Our model treats these five rules as integrated into a single super game in which

the observation of punishment behavior in any game is informative, and equally so, of the likelihood of deterrence

of violations in any of the five games Ego cares about. But suppose instead that these rules are not connected in this

way. Suppose that punishment behavior in each game Ego cares about is only predicted by punishment behavior in

non-overlapping subsets of unimportant games. We could then decompose our single super-game into five distinct

super-games, each one of which would be considerably less sparse than our original game. Our results predict that
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Ego’s value in a community with distinct super-games–with disconnected rules and a belief structure about punishment

that limits the informativeness of observing punishment of any individual rule–will be lower than the value enjoyed in

a community with a comprehensive code.

6.5 Legal Pluralism and the Nation State

Finally, we can combine some of the above observations to shed light on the phenomena of legal pluralism and the

emergence of the nation state. Modern advanced legal systems are characterized by comprehensive systems of rules,

with the label ’law’ attributed to any rule generated by a government organized within the constitutional framework of

a state. Indeed, law is frequently equated with the rules generated by a government, as distinguished from those gener-

ated from other entities such as corporations or schools or that emerge organically from social interaction [Ellickson,

1991]. But as Hadfield and Weingast [2013] emphasize, prior to the emergence of the nation state, there were many

institutions that coordinated legal order in different spheres, often in competition. Medieval Europe, for example,

was characterized by multiple legal orders, with rules generated by merchant guilds, towns, churches, local rulers and

more. Many societies, particularly those seen as struggling to establish the rule of law, are characterized by multiple

legal orders–some governing family relations, others governing commercial dealings for example. Our model suggests

a way of thinking about the tradeoffs Ego will face between participating in multiple legal communities, each of which

coordinates punishment over some subset of rules and participating in a comprehensive legal community. On the one

hand, rewards may be higher when a legal community is comprised of a relatively homogeneous group with shared

interests–such as a community of traders–who can select rules that serve Ego’s interests. But such a community will

also have lower sparsity. On the other hand a system with a single system of comprehensive rules may achieve less

alignment with Ego’s interests but may also, because of its higher sparsity, provide Ego with more information about

the value of continuing to participate.
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Appendix A: Computing V ((αi, βi); s, c, δ)

"""

File: sparse_bernoulli.py

Usage:

$ python sparse_bernoulli.py n_sparsity_values x_fidelity

[--resultfolder path/to/results]

Ex: to compute with 10 sparsity values with 500 samples along the x axis and

store the results in folder path/to/figures/ do

$ python sparse_bernoulli.py 10 500 --resultfolder path/to/figures

Not specifying result_folder defaults to the current folder

"""

from __future__ import division

import numpy as np

import matplotlib.pyplot as plt

import argparse

import sys

eps = 1e-8
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def main():

parser = argparse.ArgumentParser()

parser.add_argument(’n_sparsity_values’, type=int)

parser.add_argument(’x_fidelity’, type=int)

parser.add_argument(’--resultfolder’, type=str, default="")

args = parser.parse_args()

# These are the values we’ll use to compute cost response curves

sparsity_values = np.log(np.linspace(np.exp(0),

np.exp(.9),

args.n_sparsity_values))

# The x-axis values, determines the accuracty of the plots. Uses

# log linear spaces because that seems qualitatively better responses

costs = np.exp(np.linspace(np.log(0.00001),

np.log(.9),

args.x_fidelity))

max_ret_sparsity_values = np.exp(np.linspace(np.log(0.001),

np.log(.95),

args.x_fidelity))

start_values = {(.4, 2) : ’low-mu-high-sigma’,

(.4, 50): ’low-mu-low-sigma’,

(.5, 2) : ’mid-mu-high-sigma’,

(.5, 50): ’mid-mu-low-sigma’,

(.6, 2) : ’high-mu-high-sigma’,

(.6, 50): ’high-mu-low-sigma’}

resultfolder = args.resultfolder

for ratio, effective_samples in start_values:

# compute the costs for different sparsity values

alpha = ratio * effective_samples

beta = (1-ratio) * effective_samples

fig = plt.figure()

ax = fig.add_subplot(1, 1, 1)

ax.set_xscale(’log’)

ax.set_xlabel(’c/P’)

ax.set_ylabel(’Value’)

for s in sparsity_values:
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print "s: {}, ratio: {}, effective samples: {}".format(

s, ratio, effective_samples)

cost_response_curve = compute_cost_response_curve(

alpha, beta, s, costs)

ax.plot(costs, cost_response_curve,

label="s = {:.2}".format(s))

plt.title(’Initial state ({}, {})’.format(alpha, beta))

ax.set_ylim([0, 1.8])

plt.legend(loc=’best’)

plt.savefig(

resultfolder+start_values[(ratio, effective_samples)] + ".pdf")

fig = plt.figure()

ax = fig.add_subplot(1, 1, 1)

ax.set_xlabel(’s’)

# ax.set_xscale(’log’)

ax.set_xlim([.001, 1])

ax.set_ylabel(r’$\frac{c}{P}$’)

plt.title("Maximal Participation Cost vs Sparsity")

for ratio, effective_samples in start_values:

print "ratio: {}, effective samples: {}".format(ratio, effective_samples)

# compute the costs for different sparsity values

alpha = ratio * effective_samples

beta = (1-ratio) * effective_samples

#compute the largest c such that participation is optimal

max_c_values = []

for s in max_ret_sparsity_values:

max_c_values.append(largest_possible_c((alpha, beta), s, 0.9))

print "s = 0, max_c = {}".format(max_c_values[0])

best_s = np.argmax(max_c_values)

print "s = {}, max_c = {}".format(

max_ret_sparsity_values[best_s], max_c_values[best_s])

ax.plot(

np.r_[max_ret_sparsity_values, [1]],

max_c_values + [0], label="({}, {})".format(alpha, beta))

plt.legend(loc=’best’)

plt.savefig(resultfolder + "retirement_points.pdf")

def largest_possible_c(s0, s, delta):
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c_min, c_max = (0, 1)

while np.abs(c_max - c_min) > eps:

c = (c_min + c_max)/2.0

V = sparse_bernoulli_value_iteration(s0, s, c, delta)

if V > 0:

c_min = c

else:

c_max = c

return c_min

def sparse_bernoulli_value_iteration((a, b), s, c, delta,

tol=eps, verbose=true):

"""

Takes a belief state (a, b) and computes the V((a, b); s, c, delta)

Computation is done with value iteration so that the error is less

than tol

"""

delta_s = 1 - (1-s)*(1-delta) # As is Prop 2

"""

Values are initialized to 0, so maximal the maximal error is the

maximal positive reward for all time. With probability (1 - s) Ego

gets value P with probability \theta. We upper bound by letting

\theta = 1 and then normalize by P to get an upper bound:

UB(c, s) = (1-s -c/P)/(1-delta_s)

This ammount decreases by delta_s each step of value iteration so

we need delta_sˆH UB(c,s) <= tol ===> H >= log(tol/UB(c, s)) / log(delta_s)

"""

log_V_ub = np.log(1 - s - c) - np.log(1 - delta_s)

H_lb = ( np.log(tol) - log_V_ub ) / np.log(delta_s)

H = int(np.ceil(H_lb))

if verbose:

sys.stdout.write(’\r s: {} c: {} H: {} ’.format(

s, c, H))

sys.stdout.flush()

# Vector of a counts

a_vals = np.linspace(0, H-1, H) + a
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# Allocate vectors to store values

Vt = np.zeros(H)

Vt_minus1 = np.zeros(H-1)

# Take the horizion from H-1 to 0

for t in range(H-1, 0, -1):

# after cur_h rounds we will have seen cur_h heads or tails,

# and we incorporate the priors

cur_confidence = cur_h + a + b

# P[i] = i / Nt; i in [0,...,cur_h]

P = a_vals[:cur_h] / (cur_confidence)

# do a value iteration backup

Vt_minus1 = backup(Vt, Vt_minus1, P, s, delta_s, c)

# set up for the next round, reuse the preallocated memory

# to avoid unnnecessary realloc calls

tmp = Vt

Vt = Vt_minus1

Vt = tmp[:-1] # decrease size by 1

return Vt[0]

def backup(Vt, Vt_minus1, P, s, delta, c):

"""

Computes a value iteration back for the super game

V: vector of values at time t, in increasing order of the number of heads

Vt_minus1: vector to return values for time t-1 (avoids reallocating memory)

P: vector of transition proabilities encoding probability of heads at time t-1

s: sparsity level

delta: discount factor

c: participation costs

"""

# First compute expected value of important game

# Vt_minus1[i] = delta * (P(tails) * Vt[i] + P(heads) * Vt[i+1])

Vt_minus1 = delta * (Vt[:-1]*(1-P) + Vt[1:]*(P))

# Expected reward at next step is 2*\theta - 1 - c

Vt_minus1 += 2*P - 1 - c

# Ego decides whether or not to retire

# After this line Vt_minus1 = P(important game) * E[Rt + Vt| important game]

Vt_minus1 = (1-s)*np.maximum(Vt_minus1, 0)

# Same as before with different rewards but its repeated
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# and we don’t want to allocate extra space

Vt_minus1 += s*np.maximum(delta*(Vt[:-1]*(1-P) + Vt[1:]*P) - c, 0)

return Vt_minus1

def compute_val(alpha, beta, s, c_vals, delta=0.9):

"""

computes [V((alpha, beta); s, c, delta) for c in c_vals]

"""

vals = []

for c in c_vals:

vals.append(sparse_bernoulli_value_iteration((alpha, beta), s, c, delta))

return np.asarray(vals)

if __name__==’__main__’:

main()

21


