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Summary. Despite its potential pitfalls, ecological inference is an unavoidable part of some
quantitative settings, including US voting rights litigation. In such applications, the analyst will
typically encounter two-way tables with more than two rows and columns. Although several
ecological inference methods are currently available for 2 � 2 tables, there are fewer options
for analysing general R � C tables, and virtually none that model counts as opposed to frac-
tions. We propose a count R �C method that respects the bounds deterministically, that allows
for complex relationships between internal cell quantities, that is easily extensible and that
results from transparent assumptions. We study the method via simulation, and then apply it
to an example that is drawn from the state of Texas relevant to recent redistricting litigation
there.
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1. Introduction and basic notation

Ecological inference, or the effort to draw conclusions about statistical relationships at one
level from data that are aggregated to a higher level, has a long history in statistics. Particu-
larly when conceptualized in terms of an effort to predict the internal values of a set of con-
tingency tables when only the row and column totals are observed, ecological inference has
well-known pitfalls, primarily that substantively different internal cell counts can give rise to
the same marginal totals (Robinson, 1950). This potential has led some to the respectable view
that this form of inference should never be attempted (e.g. Freedman et al. (1991)), but in cer-
tain applications, including US redistricting litigation, there is little alternative (see Greiner
(2007)).

To date, the overwhelming majority of research on ecological inference has focused on a set
of contingency tables with two rows and two columns, but in many settings (including redis-
tricting) the relevant tables are usually larger. For this reason, we build on work by Brown and
Payne (1986) and Wakefield (2004) to propose a model and a corresponding fitting algorithm
for R×C tables. Our method may be seen as a generalization of a model for 2 × 2 tables that
was articulated by Wakefield (2004), although not the generalization that Wakefield himself
proposed. The advantages of our method include the following:
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Table 1. 3�3 table of voting by race

Democrat Republican Abstain

Black NbDi
NbRi

NbAi
Nbi

White NwDi
NwRi

NwAi
Nwi

Hispanic NhDi
NhRi

NhAi
Nhi

NDi NRi NAi
Ni

(a) deterministic respect for the bounds (see Duncan and Davis (1953)) within a parametric
structure (see King (1997)) that permits coherent expression and exploration of prior
assumptions;

(b) correspondence to a well-specified model at the level of the units subject to aggregation
(voters, in redistricting), which facilitates incorporation of survey information, assess-
ment of assumptions and explanation of the method to lay audiences;

(c) a focus on counts instead of fractions;
(d) allowance for complex relationships among counts inside the contingency tables;
(e) flexibility to explore a variety of extensions.

We note, however, that the basic form of our model, as is true of almost all ecological inference
methods, is not immune to aggregation bias.

We organize this paper as follows. We briefly discuss existing R × C ecological inference
techniques before listing our goals in formulating our proposal. We then outline our method
(including its motivation), identify quantities of interest, examine priors, present simulation
results and apply the method to a data set. We continue with a discussion of extensions of the
method before concluding.

To motivate the quantitative problem, we suppose that we seek inferences about the voting
behaviour of different racial (racial or ethnic) groups, and we observe the data aggregated to
the level of the precinct. We use the symbol Nrow COLUMNi

to refer to the (unobserved) count in
a particular cell of the ith precinct, where rows represent races and columns represent political
parties (and non-votes); i runs from 1 to I , the number of precincts in the jurisdiction, and there
are R rows and C columns in each precinct’s table. We italicize unobserved counts but leave
observed quantities in ordinary type. For illustrative purposes, we focus on the case of 3 × 3
precinct tables; extension of the method that we propose to tables of different size and shape is
obvious. Table 1 clarifies our representations.

Some models (although not ours) work with the fractional quantities that are generated by
dividing each cell by its corresponding row total. We label unobserved internal cell fractions
βrow COLUMNi

; so, for example, βbDi =NbDi=Nbi
. Xrowi refers to the racial population share of

the ith precinct, so Xhi =Nhi=Ni.

2. Existing R �C techniques, and goals

One classification of existing R × C ecological inference techniques separates methods that
eliminate or collapse rows and/or columns from methods that estimate all internal cells simul-
taneously. Elimination of columns (e.g. the ‘single regression’ of Grofman et al. (1985)) or rows
(e.g. Benoit et al. (2004)) proceeds via an undesirable assumption that cells corresponding to
a particular category exhibit no systematic patterns. Collapsing methods (e.g. King (1997))
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typically involve successive application of 2 × 2 techniques to sets of tables that are formed by
combining row and/or column categories to form supertotals (see Ferree (2004) for a discussion
of the drawbacks of at least one collapsing technique). We prefer methods that estimate all cells
of precinct tables simultaneously.

A different classification of existing methods turns on whether they predict fractions (βs, in
our notation) or counts (Ns). The distinction is subtle but important. Models in the former
category include the linear model (whether constrained, per Gelman et al. (2001), or uncon-
strained; see Achen and Shively (1995)), King’s (1997) ecological inference, the hierarchical
method of Rosen et al. (2001) and the information theoretic proposal in Judge et al. (2004). Our
uncertainty with this approach begins with the interpretation and use of the βs, particularly
in light of the fact that, in many applications, quantities of interest are functions of the inter-
nal cell counts (the Ns) in the precinct tables. For example, Judge et al. (2004) (who also used
redistricting examples) characterized the βs as row probabilities. If the βs are row probabilities,
however, it would seem that inference about the internal cell counts would require specification
of a separate distribution of the counts given these probabilities (such as a multinomial), but
Judge et al. (2004) instead suggested that predictions for the internal counts should be calculated
deterministically as the product of the (observed) row totals and the βs.

The choice to work with counts versus fractions also constitutes a fundamental decision about
how to treat precincts of varying size. For example, most fraction models would treat precinct
Tables 2 and 3 (which we make 2 × 2 to illustrate our point) as having an identical amount of
information about the turnout of blacks. Although the concept is difficult to quantify rigor-
ously, models that work with counts would treat Tables 2 and 3 differently in that Table 3 might
have greater information on black turnout behaviour than Table 2. Such treatment might be
preferable depending in part on whether the analyst wishes to build a model from the individual
voter upwards.

The discussion above rests on certain desiderata for an R×C ecological inference method; we
now list these explicitly. First, we seek an R×C method that respects the bounds on the interior
cell counts deterministically. Second, we seek a method that works with counts (as opposed to

Table 2. 2�2 table: 100 eligible to
vote

Vote No vote Total

Black 96
White 4

50 50 100

Table 3. 2�2 table: 10000 eligible
to vote

Vote No vote Total

Black 9600
White 400

5000 5000 10000



70 D. J. Greiner and K. M. Quinn

fractions) inside the precinct tables, a choice which provides a closer fit to the data-generating
process (see, for example, Prentice and Sheppard (1995) in epidemiology) by means of an indi-
vidual level model of voting behaviour. Such a model facilitates communication and assessment
of modelling assumptions to other scholars and to lay audiences while easing the incorporation
of individual level survey information. Third, we seek a technique that is sufficiently flexible
to explore within-row and between-row relationships. In the redistricting context, for example,
relationships between voter choices in electoral contests involving more than one candidate of
each race may shed light on whether voting in the jurisdiction is cued on the basis of race.
The model that we propose is sufficiently flexible on this score, and we use simulation to study
how the aggregation process causes differing amounts of loss of information for between- and
within-row relationships. Fourth, an R×C technique should allow for a variety of extensions.

3. Our proposal

3.1. The individual level model and basic structure
We begin with our individual level model. We take precinct boundaries and the racial compo-
sition of each precinct as fixed, thus assuming that the way in which precinct boundaries are
drawn is unrelated to the data-generating process. We then suppose that each potential voter
has a probability of supporting the Democrat, of supporting the Republican or of abstaining
from voting. In the basic form of the model, the potential voter’s probability vector depends
on exactly two things: his or her race and the precinct in which he or she lives. Individual
voting decisions are mutually independent. This motivation results in a product multinomial
complete-data likelihood at the bottom level of the hierarchy (see Brown and Payne (1986)).

At the second level of the hierarchy, we apply a logistic transformation to the multinomial
probability vectors within each precinct, choosing the ‘abstain’ column as our reference cate-
gory (see Aitchison (2003)). The transformation results, for each precinct, in a set of R vectors,
each having support in the (C −1)-dimensional Euclidean space of real numbers. At this point,
when discussing R × C precinct level tables, Wakefield (2004) proposed a ‘simple model’ that
assumes that the R vectors all come from the same (C − 1)-dimensional normal distribution.
Our difficulty with this approach is that, in the voting rights context, it would mean that black,
white and Hispanic voting patterns are the same. When considering 2 ×2 precinct level tables,
Wakefield articulated a bivariate normal prior with an off-diagonal term to model dependence
(see Wakefield (2004), section 5.4). This is a superior approach, and we generalize it here.

Thus, we stack the R-vectors (each of dimension C − 1) into an overall precinct vector of
transformed probabilities and assume that each stacked vector is an independent manifestation
of an R.C−1/-dimensional normal distribution. The result is what we believe to be a previously
unproposed extension of the additive logistic normal model from Aitchison (2003). For com-
putational convenience, we put semiconjugate priors on the mean and covariance matrix of the
normal distribution. In symbols, for the case of precinct tables of Table 1 form, our proposal
has the following structure: level 1,

.NbDi , NbRi , NbAi/|Nbi , θbi ∼Multi{Nbi , θbi = .θbDi , θbRi , θbAi/
T},

mutually ⊥⊥ of

.NwDi , NwRi , NwAi/|Nwi , θwi ∼Multi{Nwi , θwi = .θwDi , θwRi , θwAi/
T},

mutually ⊥⊥ of

.NhDi , NhRi , NhAi/|Nhi , θhi ∼Multi{Nhi , θhi = .θhDi , θhRi , θhAi/
T},
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mutually ⊥⊥ of . . . ; level 2, setting

ωT
bi

=
(

log
(
θbDi

θbAi

)
, log

(
θbRi

θbAi

))
,

and similarly for ωwi and ωhi ,

ωi = .ωT
bi

ωT
wi

ωT
hi

/T|μ,Σ
IID∼ N6

{
μ= .μT

b μT
w μT

h /T,Σ=
( Σb Σbw Σbh

Σbw Σw Σwh

Σbh Σwh Σh

)}
;

level 3,

μ|μ0, K0 ∼N.μ0, K0/,

Σ|ν0,Ψ0 ∼ InvWishν0.Ψ0/:

In block matrix form, subparts of μ and Σ are interpretable as governing relationships within
and between precinct table rows. For example, if Σbw =Σbh =Σwh =0, well-known properties of
the multivariate normal distribution imply that the rows of each precinct table are conditionally
independent. This special case of our method bears a structural resemblance to the proposal in
Rosen et al. (2001), although within-row relationships (which are governed by Σb, Σw and Σh)
are less constrained in the former because we use the stacked additive logistic normal distri-
bution instead of mutually independent Dirichlet distributions. Meanwhile, Σb’s off-diagonal
terms govern the relationships within the top row of Table 1.

3.2. The observed data posterior
Thus far, we have not conditioned on the column totals; they are functions of the complete data,
which are unobserved. To obtain the observed data posterior, we must sum out undetermined
cells in each precinct table and integrate out the θs. Continuing with our Table 1 example, we
sum out the four top left-hand cells, which produces

p.μ,Σ|Nobs/∝p.μ, Σ/
I∏

i=1

[∫ ubNbDi∑
NbDi

=lbNbDi

ubNbRi
.NbDi

/∑
NbRi

=lbNbRi
.NbDi

/

.1/

ubNwDi
.NbDi

,NbRi
/∑

NwDi
=lbNwDi

.NbDi
,NbRi

/

ubNwRi
.NbDi

,NbRi
,NwDi

/∑
NwRi

=lbNwRi
.NbDi

,NbRi
,NwDi

/

.2/

(
Nbi

NbDi NbRi NbAi

)(
Nwi

NwDi NwRi NwAi

)(
Nhi

NhDi NhRi NhAi

)
.3/

×
(
θ

NbDi
bDi

θ
NbRi
bRi

θ
NbAi
bAi

)(
θ

NwDi
wDi

θ
NwRi
wRi

θ
NwAi
wAi

)(
θ

NhDi
hDi

θ
NhDi
hRi

θ
NhAi
hAi

)
.4/

×|Σ|−1=2 exp{− 1
2 .ωÅ

i −μ/TΣ−1.ωÅ
i −μ/} .5/

× .θbDiθbRiθbAiθwDiθwRiθwAiθhDiθhRiθhAi/
−1 .6/

× I.NbDi +NwDi +NhDi =NDi/I.NbRi +NwRi +NhRi =NRi/ .7/
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×I.NbAi +NwAi +NhAi =NAi/I.NbDi +NbRi +NbAi =Nbi/ .8/

× I.NwDi +NwRi +NwAi =Nwi/I.NhDi +NhRi +NhAi =Nhi/ .9/

× I.θbDi +θbRi +θbAi =1/I.θwDi +θwRi +θwAi =1/ .10/

× I.θhDi +θhRi +θhAi =1/dθi

]
: .11/

Nobs is a matrix, the ith row of which (Nobsi
) contains the row and column totals for precinct i’s

contingency table, and θi = .θT
bi

θT
wi

θT
hi

/T. ‘lb’ and ‘ub’ stand for lower bound and upper bound
respectively. The notation in the summation symbols above reflects the fact that the ranges of
the sum for inner summations depend on the values of the variable in outer summations. ωÅ

i is
ωi thought of as a deterministic function of θi: not a random variable.

The above expression can be understood as follows. Lines (1) and (2) represent the prior as
well as the integration over the missing Ns and θs. Lines (3) and (4) are the contribution from
precinct i’s multinomials: one for each precinct table row. Line (5) is the stacked additive logistic
normal distribution. Line (6) is the Jacobian of the transformation from ω-space to θ-space.
Lines (7)–(9) compel the rows and columns to sum to their respective observed totals. Lines (10)
and (11) represent three separate sum-to-1 constraints for a precinct’s θ-vector.

We fit the model by using a Gibbs sampler (Tanner, 1996), producing predictions of the inter-
nal cell counts (functions of which are often the quantities of interest) at every iteration in a
manner that respects the bounds deterministically. Appendix A has the details.

3.3. Priors and quantities of interest
Identifying quantities of interest and assessing the implications of priors are especially critical
in ecological inference, where the two are intimately connected. Wakefield (2004) demonstrated
that, in this setting, seemingly innocuous choices of priors can have unexpected consequences,
such as concentration of prior mass at extreme values of a parameter space. Moreover, we have
found the ill-defined but near universal desire for ‘flatness’ in a prior a challenge to achieve.
Priors that appear reasonably non-informative for one quantity of interest with one jurisdic-
tion’s racial pattern and for a particular election may no longer be so when applied to a different
quantity of interest, or a different racial pattern or a different election.

For illustration, we discuss two sets of quantities of interest that are relevant to recent Texas
redistricting litigation that reached the US Supreme Court (see LULAC versus Perry, 126 S.
Ct. 2594 (2006) and Hebert et al. (2006)). As applied to 3 × 3 tables such as Table 1, the first
consists of ΛbD =ΣiNbDi=Σi .NbDi +NbRi/, and similarly for ΛwD and ΛhD, i.e. the fraction of
each race’s voters who support the Democrat. These quantities ordinarily determine whether
voting is ‘racially polarized’. The second set is the fraction of voters who are members of a
particular race, i.e.

Γh =∑
i

.NhDi +NhRi/
/∑

i

.NbDi +NbRi +NwDi +NwRi +NhDi +NhRi/

for Hispanics. These quantities may show which race’s voters control the election. Obviously,
this list is not exhaustive; turnout by race .Σi .NbDi +NbRi/=Σi Nbi for blacks) is often of
interest.

Different quantities of interest may suggest different choices of prior parameters. To illustrate,
we refer to Texas Congressional District 24, a district that played a prominent role in LULAC
versus Perry. We use 2000 Presidential election results as matched to figures from the 2000 census
by Lubin and Voss (2001). In 2000, the district had 249 precincts and a voting age population
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(a) (b)

(c) (d)

(e) (f)

Fig. 1. Histograms of draws from the prior distribution of potential quantities of interest induced by different
hyperparameter values (values for (a) and (b) are inappropriate for either quantity; values for (c) and (d) might
be appropriate if the focus is on ΛbD, but the nearly total lack of coverage at large values of Γb makes this
prior potentially inappropriate for this quantity; values for (d) and (e) induce a bimodal (and thus unattractive)
prior in ΛbD but provide greater coverage for Γb across the (0,1) interval): (a), (b) ν0 D 7, ψ0 D 1:5, κ0 D 5,
μ0 D�0.8; (c), (d) ν0 D10; ψ0 D1:5, κ0 D1, μ0 D�0.8; (e), (f) ν0 D7, ψ0 D1, κ0 D25, μ0 D�2.4

composition of 31% Hispanic, 20% non-Hispanic any part black and 49% other (white); there
were six precincts that were 90% or more black, 14 that were 90% or more white and none that
were 90% or more Hispanic.

Lacking a better idea, we set K0 =κ0Idim.Σ/ and Ψ0 =ψ0Idim.Σ/, where both κ0 and ψ0 are
scalars. With this in mind, an instinctive approach to choosing prior values might suggest that ν0
andψ0, which can be roughly conceptualized as the number of pseudodistricts and the precision
that is added in the prior, should be set low, that κ0 should be large (to reduce the influence of
μ0 on the posterior) and that μ0 should be set under the expectation that approximately 50%
of potential voters do not vote. The histograms in Figs 1(a) and 1(b) show simulations from
a prior distribution that reflects such choices; in short, instincts are untrustworthy. The prior
for ΛbD is undesirable for an analysis focusing on this quantity because mass is concentrated
at extreme values of parameter space, substantively corresponding to a belief that voting in the
jurisdiction is polarized. Meanwhile, the prior that is induced on Γb is insufficiently diffuse, with
values above 0.6 having essentially no mass. The histograms in Figs 1(c)–1(f) show potentially
appropriate values for analyses in which interest is in ΛbD (Figs 1(c) and 1(d)) and Γb (Figs 1(e)
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and 1(f)); note that hyperparameter values that induce a prior that is reasonable for one quantity
might be less useful for the other quantity.

4. Simulation studies

We present the results of simulation studies of our model, which we conducted by using our
running example of contingency tables of Table 1 form. Our research design begins with the iden-
tification of four dimensions to vary when generating data: the distribution of .Xbi , Xwi , Xhi/

T,
which controls whether each table’s units typically fall principally in one or another row or are
spread more evenly across rows; κ0, which controls the variation in expected behaviour of units
across sets of contingency tables (data sets); μ0, which controls whether (within each table)
members of one row behave differently from members of another row in expectation; and the
expected Ni, corresponding to small and large numbers of units in each table. In terms of our
running example, these dimensions translate to the level of housing segregation in a jurisdic-
tion of interest, the expected uniformity of voting behaviour across jurisdictions, the expected
extent of voting polarization and expected precinct size. These dimensions give us 24 =16 pos-
sible data-generating processes. We draw 100 data sets from each of 16 design combinations.
Appendix A has the details.

We studied coverage rates, lengths of 90% and 95% posterior credible intervals (which were
formed by equal-tailed quantiles) and other quantities with respect to the 21 hyperparameters
in .μ,Σ/, the nine internal cell count totals that are represented by ΣiNrc for r = (b, w, h) and
c= (D, R, A), ΛrD for r = (b, w, h) and turnout by race. We present some results for the quantity
ΛhD and for correlation coefficients of the Σ-matrix. We focus on ΛhD because, in our running
example of US redistricting, inference about Hispanic voting patterns can be more important
and more complex than inference for the corresponding whites and blacks patterns, the impor-
tance stemming from the potential for Hispanics to serve as swing voters, and the complexity
stemming from their (generally) lower turnout rates (a circumstance that is mirrored in our
simulations).

Coverage rates of all quantities for 90% and 95% intervals varied stochastically around nom-
inal with no discernible pattern across simulation dimensions. For example, the rates for the
95% intervals of ΛhD in the 16 simulations that are identified in Table 4 were .0:98, 0:97, 0:94,
0:95, 0:89, 0:94, 0:89, 0:94, 0:96, 0:98, 0:97, 0:93, 0:98, 0:94, 0:96, 0:96/. More interesting
was the variation in the lengths of the posterior intervals across simulation dimensions. Because
the complete data (i.e. the internal cell counts) were drawn from the model, and because cover-
age rates were stochastically similar, these lengths measure the amount of information that the
model can recover after the aggregation of internal cell counts to row and column margins.

Table 4 reports the (0.25, 0.75) quantiles of the lengths of 95% intervals for ΛhD in the var-
ious simulation scenarios. Lower numbers mean smaller intervals and thus more information.
A comparison of the top and bottom halves of Table 4 provides evidence of something that
researchers have long guessed: that greater information is available when contingency table
units tend to fall largely in one or another table row. More surprising is the fact that, at least
for the (non-linear) function of the complete data represented by ΛhD, greater information is
available when the behaviour of units in row r is different from the behaviour of units in row
rÅ. The italic figures in Table 4 illustrate this fact: all else being equal, intervals for polarized
data tend to be smaller than intervals for non-polarized data. Wilcoxon tests of a null hypoth-
esis of equal mean interval lengths, run on the eight polar versus non-polar pairs of interval
length vectors, resulted in p-values (to four decimal places) of .0, 0, 0, 0, 0, 0, 0:0061, 0:0017/.
Similarly, lower uniformity in expected voting behaviour tends to push values of μ (across
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Table 4. Quantiles of posterior interval lengths†

Segregation Polarization Results for high uniformity Results for low uniformity

Large Small Large Small

High Polar (0.049, 0.067) (0.048, 0.065) (0.041, 0.065) (0.040, 0.060)
High Non-polar (0.060, 0.075) (0.060, 0.079) (0.054, 0.075) (0.053, 0.074)
Low Polar (0.113, 0.145) (0.118, 0.153) (0.112, 0.163) (0.103, 0.151)
Low Non-polar (0.136, 0.177) (0.138, 0.181) (0.126, 0.179) (0.120, 0.162)

†Each cell represents 100 data sets drawn under different scenarios. ‘High segregation’ refers to
highly segregated housing patterns; more generally, that each contingency table’s units tend to con-
centrate within one row. ‘High uniformity’ refers to low variation in expected voter behaviour across
jurisdictions, i.e. predictability of unit behaviour across data sets. ‘Polar’ refers to whether voting
is racially polarized, i.e. whether (within each table) members of one row behave differently from
members of another row (in expectation). ‘Large’ refers to the number of potential voters (units)
in each precinct. The numbers in the cells represent the 0.25 and 0.75 quantiles of the lengths of
the 95% posterior intervals for ΛhD. Cell comparisons show how each simulation dimension affects
the amount of information that is lost in aggregation. For example, comparison of the two cell
values in italics suggests that, for highly segregated housing patterns in small precincts with low
voter uniformity, greater information is available about ΛhD when Hispanic voting patterns differ
from those of blacks and whites (i.e. voting is polarized as opposed to non-polarized).

jurisdictions) into the extreme of the parameter space, making recovery of the bounded quan-
tity ΛhD easier.

Similar reasoning yields conclusions regarding the relative loss of information in between-
and within-row relationships, a subject that previous R×C ecological inference models could
not assess because the former were assumed away. Recall from Section 3.1 that, for example, the
off-diagonal terms of Σb govern the relationships between the quantities within the top row of
Table 1, whereas Σbw governs the relationships between the quantities in the top row of Table 1
versus those of the second row. To assess the comparative loss of information due to aggrega-
tion, we examined the coverage rates and posterior intervals for the three within-row correlations
(one each for Σb, Σw and Σh) as compared with the 12 between-row correlations (four each
for Σbw, Σbh and Σwh). Recovery rates of 95% intervals for both sets of quantities were nearly
identical: 95.52% for within-row correlations versus 95.02% for between-row correlations (the
difference was not statistically significant under standard tests for equal proportions). But, as
Fig. 2 demonstrates, larger intervals were needed to recover between-row correlations. Wilcoxon
tests suggested that these results were not due to random variation. Note also that Fig. 2 implies
that, at least in some data sets, the data contain information about between- and within-row
relationships in that the posterior intervals are sufficiently narrow for substantive conclusions
(all this, of course, conditional on the model).

5. Application to real data: Bush versus Gore in Texas Congressional District 24,
2000

We apply our method to the Bush versus Gore Presidential contest as run in the precincts com-
prising Texas Congressional District 24 in 2000. One of the issues in LULAC versus Perry was
whether Texas Congressional District 24 ‘performed’ for African-Americans, despite the fact
that blacks comprised only 20% of its voting age population. The allegation was that African-
Americans could control the Democratic primary, then join with Hispanics and some whites
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Fig. 2. Boxplots of the lengths of 95% posterior intervals for all between- and within-row correlations in
the Σ-matrices from our simulations: the within-row correlations generally have smaller intervals than the
between-row correlations, despite stochastically identical coverage rates; this suggests greater loss of infor-
mation due to aggregation for between-row relationships

(the latter generally leaning Republican) to enable a Democratic victory. In 2000, the most com-
petitive contest in the relevant precincts was the Presidential election, with Vice-President Gore
winning 51–49; this contest also had the largest turnout.

The expert witnesses in LULAC versus Perry used a variant of the method of bounds as well
as regression to assess racial voting patterns, but these methods yield either useless or physically
impossible results for our data set. We fitted our model to the data by using five chains of 6 mil-
lion iterations each, saving every 4000th draw. The method yielded 95% posterior intervals for
ΛbD, ΛwD and ΛhD as follows: (0.988–0.999), (0.224–0.262) and (0.955–0.999). 95% intervals for
turnout for blacks, whites and Hispanics were (0.468–0.516), (0.445–0.469) and (0.079–0.113).
In digesting these results, we proceed on two tracks: first, assessing their plausibility; second,
drawing conclusions supposing the results to be accurate.

On the first point, all results seem quite reasonable except for the posterior distribution of
ΛhD, which suggests implausibly pro-Gore preferences among Hispanic voters. Informal con-
sultations with people who were familiar with voting patterns in the area lent support to our
view that the ΛhD-results were suspicious. Fig. 3 demonstrates that one possible explanation
for this result is aggregation bias. If white voters in predominantly Hispanic precincts sup-
ported Gore in greater fractions than white voters in predominantly white precincts, this fact,
in combination with low turnout of Hispanics, might produce implausibly pro-Gore estimates
for Hispanics. These results suggest that analysts should always compare a method’s results
with available external information for a data set. In our view, there are two primary defences
against aggregation bias: obeying the bounds deterministically and adding information from
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Fig. 3. Ternary plot of Bush versus Gore as run in the precincts constituting Texas Congressional District 24
in 2000: larger symbols indicate more populous precincts, and lighter shades indicate a greater Gore share
of the two-party vote; if we drop an imaginary vertical line from the Hispanic vertex to the bisector of the trian-
gle’s bottom leg, we see that, generally, most non-Hispanics in predominantly Hispanic districts were white;
if whites in predominantly Hispanic precincts voted more Democratic than whites in predominantly white
precincts, aggregation bias could affect the estimates of the preferences of Hispanic voters, who turned out
in low percentages

surveys, covariates or other sources. Our proposal builds in the former and facilitates the latter
(see below). Of course, neither defence is foolproof, and it can be difficult to know whether one
has implemented the latter properly (Cho, 1998).

Next, suppose that the results above were accurate. This is only one election, and there are
various reasons why it might not be as indicative as other contests for inferences regarding racial
bloc voting (e.g. both candidates are white). But if this pattern were evident in other general
elections, and if blacks tended to dominate the Democratic primary (which is perhaps a reason-
able hypothesis given their party preferences and turnout), then results like these support the
assertion that District 24 performs for African-Americans, despite their 20% voting age popu-
lation. African-American voters appear to be uniformly supporting a candidate of choice who
is different from that of whites, but the black candidate of choice can prevail (barely) because of
the support of the few Hispanics who vote and because of a small amount of crossover voting
by whites.

6. Extensions

The ease with which our method may theoretically be extended is one of its appealing attributes.
Extensions provide fertile ground for further research. We briefly mention a few here.

Because it begins with a model at the individual level, our method can incorporate certain
kinds of survey information with relative ease. Continuing with our redistricting motivation,
we confine our attention to a poll that might, with varying degrees of plausibility, be treated
as a simple random sample of voters or potential voters in some precincts, perhaps a well-
executed exit poll in a jurisdiction that, for legal reasons, tracks the races of people who enter
polling booths (i.e. the Xs for each precinct table representing racial fractions of people
entering or exiting polling places). We suppose that some form of polling is implemented
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in a subset S of the I precincts in the jurisdiction and contest of interest. In the ith pre-
cinct, let Ki denote the number polled, Kbi the number of in-sample blacks and KbDi the
number of in-sample blacks voting Democrat, with similar quantities defined for other races
and parties. Recalling our individual level model, the likelihood of observing a particular vector
.KbDi KbRi KbAi KwDi KwRi KwAi KhDi KhRi KhAi/

T in precinct i is{(
Ni

Ki

)−1( Ki

Kbi Kwi Khi

)
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θ
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θ
KhAi
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}I.i∈S/

: .15/

In the posterior, after conditioning on the observed Ks (and thus adjusting, for each i∈S, the
applicable Ns), adding lines (12)–(15) to lines (1)–(11) does not disrupt the basic nature of the
model. In particular, the fitting process that is articulated in Appendix A for the basic model
can proceed largely as before.

Matters become more complicated if the jurisdiction does not record the races of people
entering polling booths (i.e. the Xs for each precinct table representing racial fractions of people
who could enter or exit polling places). Even accepting that we observe a simple random sample
in precinct i of people exiting the polling place, it may be implausible to assume that the frame
corresponding to this sample is the set of all potential voters in the precinct because too many
potential voters stay away from the polls. One way to proceed here is to discard the information
from any survey respondent who reports that he or she did not vote in the electoral contest of
interest and to assume that the responses of those who did vote (again totalling Ki in our nota-
tion) constitute a simple random sample in precinct i of actual voters. Under this assumption,
the expression corresponding to lines (12)–(15) for the previously discussed case is{(

Ni −NAi
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)−1( Ki
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)(
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In terms of sampling from the posterior, matters have become less agreeable. Any term involving
a θ or an italicized N cannot be ignored, and the presence of such terms in line (16) means that
the fitting strategy that is articulated in Appendix A is no longer directly applicable. Outside the
exit polling context, other sampling schemes (e.g. stratified or cluster sampling) raise additional
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challenges, although addressing such challenges may be eased by the presence of a coherent
individual level model.

Other, non-sampling, extensions are also possible. For instance, in some applications it may
be useful to allow row- or column-specific random effects to influence ωi. These effects could
be assumed to be independent across tables or could be parameterized to allow for spatial,
temporal or spatiotemporal associations across tables (Haneuse and Wakefield, 2004; Quinn,
2004). The utility of such modelling strategies will obviously vary greatly across applications.

Finally, our model is amenable to extensions that have been previously discussed in the lit-
erature. Covariates may be included by substituting regressions for μ. Robustness might be
increased via the substitution of a more dispersed ellipsoidally symmetric distribution, such as
multivariate t with known or unknown degrees of freedom, for the normal distribution. The
normal structure at the upper level facilitates sharing of information between electoral contests
across time and office via hierarchical techniques.

We caution that in applied work the analyst must consider whether possible extensions will
be appropriate. The loss of information due to aggregation is known to be large, and adding
complications to the basic method might demand too much from the data. Our point here is
that our method provides a flexible structure within which researchers can explore what the data
can tolerate and, correspondingly, how much can be learned.

7. Conclusion

In this paper, we have proposed a count ecological inference model that can handle data sets
with precinct tables of any size and shape. Our method has certain advantages over previously
proposed models, such as deterministic respect for the bounds, flexibility and correspondence
to a plausible account of the data-generating process. We have discussed factors affecting the
choice of prior in the redistricting context and demonstrated that careful thought is required
here. We have used simulation studies from our model to assess the relative losses of information
due to aggregation for various quantities that might be of interest to applied researchers. In sub-
stantive applications, we have shown how the results of our model may be useful in redistricting
litigation.
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Appendix A

A.1. Fitting
To fit our model, we create a Gibbs framework (Tanner, 1996) in which we successively sample from

(a) the distribution of the internal cell counts in each precinct given θi in a manner that respects the
bounds deterministically,
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(b) the distribution of each precinct’s θi given that precinct’s internal cell counts as well as .μ, Σ/ and
(c) the distribution of .μ, Σ/ given all precincts’ θis.

Regarding the internal cell counts, p.NbDi
, NbRi

, NbAi
, NwDi

, NwRi
, NwAi

, NhDi
, NhRi

, NhAi
|Nobsi

, θi/ is
proportional to the product of lines (3) and (4) and (7)–(9) in Section 3.2. To draw samples from this
conditional posterior, we adapt the algorithm that was proposed by McDonald et al. (1999) for sampling
from a roughly similar distribution. The key point is that the distribution of the counts in a 2×2 precinct
subtable that is defined by the intersection of any two unique rows and any two unique columns, condi-
tional on all remaining internal counts, is univariate non-central hypergeometric. This fact suggests a small
Gibbs sampling strategy in which we choose two rows and two columns in the precinct table, form the
corresponding 2×2 subtable together with the current values of its four θ-parameters, add to calculate the
row and column totals of the 2×2 subtables, normalize the θs, discard the original counts in the internal
cells of the subtable and draw from the corresponding univariate non-central hypergeometric distribution
by using an adaptation of the method that was developed by Liao and Rosen (2001). We complete this
small Gibbs step at least once for each possible combination of two rows and two columns within each
precinct within each iteration of the overall Gibbs sampling.

Regarding the row probabilities, in each precinct, the distribution of θi given all the internal cell counts
as well as .μ, Σ/ is proportional to the product of lines (4)–(6) and (10) and (11), above. Because this dis-
tribution is non-standard, we sample from it by using the Metropolis–Hastings algorithm (Tanner, 1996).
We generate a proposal in ω-space from a multivariate t4.μ.t/, γiΣ.t// distribution and transform back to
θ. γi is a (constant) tuning parameter which is set in initial runs, and superscript (t) denotes the iteration.
The conditional distributions of the hyperparameters are in standard form.

A.2. Simulation studies
We began by drawing .Xbi

, Xwi
, Xhi

/∼Diri{αÅ.0:35, 0:45, 0:2/}, a process that in expectation yields pop-
ulation shares of African-Americans, whites and Hispanics that are similar to those in jurisdictions of
frequent interest. α= 0:5 and α= 2:5 corresponded to high and low segregation in housing respectively.
We drew Ni ∼ Poi.Q/, with Q = 400 and Q = 2000 corresponding to small and large precincts respec-
tively. We then drew μ∼ N.μ0,κ0I6/. For polarized and non-polarized simulations, μ0 = .0, −2, −2, 0,
−0:5, −1:5/ and μ0 = .−0:7, −0:7, −0:45, −0:45, −0:74, −0:74/ respectively, mirroring (in expectation)
party support levels and turnout rates that are often found in voting patterns by race. For high and low
uniformity, we set κ0 = 0:05 and κ= 0:5 respectively. Replication information appears on our Web sites
http://tinyurl.com/2ynrwm and http://tinyurl.com/32kumh.

We assessed convergence by examining diagnostics that were proposed by Gelman and Rubin (1992)
and Heidelberger and Welch (1983) and by reviewing auto-correlation measures. Stubborn auto-correla-
tion necessitated the use of 1500000 iterations per chain, and we ran three chains for each simulation,
discarding the first 15% of each as a burn-in. These settings resulted in generally unremarkable values for
the convergence diagnostics. For example, for the 27 upper level parameters in our multivariate normal
distribution, over 97% of the Gelman–Rubin diagnostics had values below 1.1, and fewer than 2.5% had
Heidelberger–Welch p-values of 0.05 or lower.
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