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Online ratings data are pervasive, but are typically presented
in ways that make it difficult for consumers to accurately infer
product quality. We propose an easily understood presentation
method that has the virtue of incorporating a parametric model
for the underlying ratings data. We illustrate the method with
new data on the content quality of news outlets, and demon-
strate its reliability and robustness with an experiment of online
users and a simulation study. Our simple approach is easy to
implement and widely applicable to any presentation of ratings
data.
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1. INTRODUCTION

The Internet has deluged consumers with information. One
prevalent category of such information consists of ratings from
Internet users evaluating any number of goods from music,
movies, restaurants, companies, and consumer products, to le-
gal cases, and even professors. Table 1 presents some exam-
ples from prominent Web sites, such as Amazon and Netflix, to
more niche-based Web sites, such as Transport Reviews (post-
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ing ratings of auto transporters) and Rate My Professors (post-
ing ratings of college professors). Needless to say, such new
sources of information hold great promise for the sophisticated
consumption of goods and services. Yet with this explosion of
information, fundamental statistical principles of data analysis
and presentation are often ignored, thereby making the proper
substantive interpretation of information difficult, if not impos-
sible.

Current graphical displays of online ratings data are lacking
in three respects. First, current practice ignores systematic dif-
ferences across raters. Some raters may be more inclined to use
high ratings while others may use all the rating categories but
do not discriminate very well between truly high and low qual-
ity products. Weighting all raters equally regardless of what is
known of their overall rating behavior (as is generally current
practice) has the potential to bias results and makes it poten-
tially easy for users to manipulate overall ratings. Second, cur-
rent practice fails to incorporate statistical uncertainty in the
ratings. Users typically observe only a discrete number of stars,
as illustrated in the right column of Table 1. Some, but not all,
Web sites attempt to cure this problem by presenting the to-
tal number of ratings submitted. Although this provides some
measure of uncertainty to users, sampling variability alone is
not the only reason to be uncertain of true product quality. Fi-
nally, most Web sites unnecessarily discretize mean ratings by
rounding them to the nearest whole number, thereby discarding
potentially valuable information. Some Web sites, such as Net-
flix, provide partial stars, but even this practice remains some-
what uncommon.

We address this problem by proposing model-based graphical
displays that: (1) adjust for rater-specific factors, (2) are easily
interpretable, and (3) are more accurate than extant graphical
displays.

2. AN EXAMPLE DATASET: MONDO TIMES NEWS
OUTLET RANKINGS

As a running example, we use data from Mondo Times (http:
//www.mondotimes.com/ ), an online company that disseminates
information about media outlets. Mondo has more than 60,000
users and contains information on 16,920 newspapers, maga-
zines, radio stations, and television stations in 211 countries.
Raters submit five-point ratings of the content quality of news
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outlets from awful, poor, average, very good, to great. Only
Mondo Times members are eligible to submit ratings; member-
ship requires a valid e-mail address, and multiple submissions
from the same IP address for one outlet are prohibited.

The dataset used in this article features 1,515 products (news
outlets) and 946 raters. Each product was rated between 1 and
89 times and each rater rated between 1 and 130 products. The
average number of ratings for a product is 3.0 and the average
number rated by a rater is 4.8. The number of ratings in each cat-
egory summed over all products and raters is: awful, 1003; poor,
606; average, 834; very good, 892; great, 1176. These data are
available from the authors and the Ratings package (available
at http://cran.r-project.org/ ). We use these data not in an effort
to conduct a comprehensive analysis, but to illustrate how our
proposed methods can be applied to a real dataset.

3. A PRACTICAL SOLUTION: MODEL-BASED
FIGURES

The starting point for the statistical graphics discussed in this
article is an item response theory (IRT) model for the underly-
ing ratings. IRT models permit researchers to account for sys-
tematic inter-rater differences, calculate direct quantities of in-
terest, and estimate associated statistical uncertainty (Bock and
Lieberman 1970; Lord 1980; Albert 1992). Interest in and de-
velopment of these types of measurement models has increased
considerably over the past 10 years (Bradlow and Zaslavsky
1999; Patz et al. 2002; Boeck and Wilson 2004; Segall 2004).
But while the science of analyzing such data has advanced, the
presentation of results has not been well-adapted to the context
of Web site ratings—even in spite of the recognition that data
visualization remains central to the dissemination and under-
standing of scientific results (Tukey 1977; Tufte 1983; Cleve-
land and McGill 1985, 1987; Cleveland 1993; American Asso-
ciation for the Advancement of Science 2004). Although some
graphical displays of IRT parameters require users to possess a
fair amount of statistical knowledge, our proposed graphs make
use of the posterior predictive distribution and are thus easily
interpreted as the (posterior) probability of a randomly chosen
user providing a particular rating for a product. Further, these
graphs require only minor changes to the way that current rat-
ings data are displayed on most Web sites.

3.1 A Statistical Model for Ratings Data

The model upon which our graphs are built is an ordinal item
response theory (IRT) model with fixed cutpoints. It is a special
case of the models discussed by Johnson and Albert (1999) and
Quinn (2004). Because the proposed graphical displays depend
only on the posterior predictive distribution of the observed rat-
ings, any reasonable statistical model for these ratings could be
substituted. The setup of our model is the following.

Let R denote the set of individuals who have rated at least
one product and let P denote the set of products that have at
least one rating. To ensure comparability, it is also necessary to
ensure that the products are connected in the sense that any two
products can be bridged by a sequence of raters who have rated
at least some of the same products. In what follows, we use r

and p to index raters and products, respectively.
The observed data are the collection of ordinal ratings of the

items in P by the raters in R. We let Y, with typical element
ypr , denote the collection of all possible |P| × |R| ratings and
yobs

pr denote the observed rating of product p by rater r . In many
cases, r will not rate p and ypr is not observed. It is assumed
that ypr is ordinal and can take values in {1, 2, . . . ,C} for all
p ∈ P and r ∈ R. In what follows, we will think of the numbers
1, 2, . . . ,C as increasing in quality.

We assume that elements of Yobs are generated according to:

yobs
pr =

{
c ⇐⇒ y∗pr ∈ (γc−1, γc] and z pr = 0

missing ⇐⇒ z pr = 1,

where y∗pr is a latent variable, z pr is a missingness indicator,
and γ0 < γ1 < · · · < γC are a series of cutpoints. Here we
constrain γ0 = −∞, γ1 = 0, and γC = ∞ and estimate the
remaining cutpoints.

We parameterize y∗pr as

y∗pr = αr + βrθp + εpr , εpr
iid
∼ N (0, 1), p ∈ P, r ∈ R.

αr is a scalar parameter that can take values anywhere on the
real line and captures the location that rater r uses as the center
of her internal scale. If rater r tends to give more negative rat-
ings to all products than other raters, then αr will be less than
the α’s of the other raters (i.e., the rater is “critical”, similar to
users in the left panel of Figure 2). On the other hand, if rater
r tends to give more positive ratings to all products than other
raters, αr will be larger than the α’s of the other raters. βr is
a scalar parameter that captures how well rater r discriminates
between low and high quality products. To identify the model
we assume that βr ∈ R+ for all r ∈ R. A value of βr near
0 implies that rater r is unable to distinguish between low and
high quality products—her observed ratings are essentially in-
dependent of true quality. A large value of βr implies that r is
extremely sensitive to small differences in quality (i.e., the rater
is “discriminating,” similar to users in Figure 3). θp is a scalar
parameter that captures the latent quality of product p. With the
constraint that βr ∈ R+ for all r ∈ R, the interpretation is that
quality is increasing in θp for all p ∈ P . We assume (a) that
data are missing at random and (b) distinctness of model and
missingness parameters in the sense of Little and Rubin (1987)
and Bradlow and Thomas (1998). In Section 4.2, we explore
violations of these assumptions.

We adopt a Bayesian approach to fit this model. The infor-
mation above is sufficient to write down the sampling density
p(Yobs|ααα, βββ, θθθ, γγγ ) for this model as

p(Yobs|ααα, βββ, θθθ, γγγ ) =
∏

{p,r : z pr=0}

{
8
(
γyobs

pr
− αr − βrθp

)

−8
(
γyobs

pr −1 − αr − βrθp

)}
,

where the notation γyobs
pr

refers to γc if and only if yobs
pr = c

and 8(·) is the standard normal distribution function. Specifi-
cation of a joint prior density p(ααα, βββ, θθθ, γγγ ) allows us to write
the posterior density p(ααα, βββ, θθθ, γγγ |Yobs) using the usual for-
mula. For the analysis in the article we assume that each αr
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Table 1. Sample of online ratings data.

Website Example

Amazon

iTunes

Epinions

PC Magazine

Netflix

YahooShopping

YouTube

Westlaw

Transport Reviews

Rate My Professors

Mondo Times

follows a normal prior distribution with mean 1 and variance 1,
each βr follows a normal prior distribution with mean −5 and
variance 20 truncated to the positive half of the real line, the
elements of γ have improper uniform prior distributions, and
that each θp follows a standard normal prior distribution with
all parameters mutually independent. We fit the model using
Markov chain Monte Carlo (MCMC). Easy-to-use, free soft-
ware to implement this model and our proposed figures is avail-
able at http://cran.r-project.org/ as the Ratings package.

3.2 Easily Interpretable Figures Based on the Posterior
Predictive Distribution

The plots proposed in this article make use of the probability
that a randomly selected rater will provide a given rating for a
particular product. Because most raters rate very few products,
a model-based method to calculate these probabilities is desir-
able. Our model-based calculations rely on posterior predictive
probabilities (Meng 1994; Gelman et al. 1996, 2003; Gelman
2004).

For the model above, the posterior predictive density for ypr
is:

p(yrep
pr |Y

obs) =
∫ ∫ ∫ ∫

p(yrep
pr |αr , βr , θp, γγγ )

×p(αr , βr , θp, γγγ |Y
obs)dαr dβr dθpdγγγ , (1)

where “rep” indicates that yrep
pr is a replicated datapoint.

Given M Monte Carlo samples
{
α
(m)
r , β

(m)
r , θ

(m)
p , γγγ (m)

}M

m=1
from the posterior distribution with density
p(αr , βr , θp, γγγ |Yobs) the quantity in Equation (1) can be

approximated with:

p(yrep
pr = c|Yobs) ≈

1

M

M∑

m=1

{
8
(
γ (m)c − α(m)r − β(m)r θ(m)p

)

− 8
(
γ
(m)
c−1 − α

(m)
r − β(m)r θ(m)p

)}

for c = 1, 2, . . . ,C .
Note that p(yrep

pr = c|Yobs) is defined for all raters and
products—even those rater-product combinations for which no
rating was observed.

We are interested in summarizing these posterior predictive
probabilities for product p over all raters—even those raters that
did not actually rate p. Specifically, we use various methods of
graphing

τpc =
1

|R|

∑

r∈R

p(yrep
pr = c|Yobs) (2)

for a particular product p and all c = 1, . . . ,C . τpc can be in-
terpreted in two related ways. On the one hand, τpc is simply
the sample average of p(yrep

pr = c|Yobs) taken over all raters in
R. Viewed this way, τpc is nothing more than a descriptive sum-
mary of the collection of p(yrep

pr = c|Yobs) for r ∈ R. It is also
possible to think of a situation where a rater r ′ is randomly se-
lected from R with equal probability. It is easy to show that the
posterior predictive probability that yrep

pr ′ = c given Yobs is τpc.
Thus, τpc can be thought of as the probability that a randomly
chosen rater (from the set of observed raters) will give product
p a rating of c given the observed data.

We consider two main ways to plot τpc. The first approach
makes use of a similar visual layout to standard star displays
such as those seen in Table 1. The major difference is that rather
than using a single color to fill the number of stars equal to the
mean rating, our graphical approach color codes each star in
a way that reflects the value of τpc for that product and rating
category. This allows the user to directly gauge the probabil-
ity of a randomly chosen user giving the product in question
any rating. We refer to this figure as the “model-based starplot.”
The second plotting method presents the same information as
the model-based starplot but in the form of a barplot where the
height of the cth bar for product p is equal to τpc. We refer to
this type of figure as a “model-based barplot.”

The advantage of the model-based starplot is that its format
is closely related to existing simple starplots commonly used
by Web sites. The advantage of the model-based barplot is that
it presents the relevant information as vertical distances from a
horizontal line, which may be more easily interpretable (Cleve-
land and McGill 1985; Cleveland 1993). Which method (if ei-
ther) is to be preferred is clearly an empirical question. Section
4.1 provides results from an experiment we conducted to assess
the ability of human subjects to correctly decode information
from a variety of graphical displays of the same ratings data.
The next section applies our approach to the Mondo Times news
outlet ratings.

3.3 An Application: Mondo Times News Outlet Rankings

To illustrate our approach with a real dataset, we examine the
Mondo Times data described in Section 2. Figure 1 presents
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Figure 2. All ratings submitted by the two raters, both of whom rated U.S. News & World Report in row 9 of Figure 1. Each panel depicts data
from a single rater. Each circle in each panel represents a news outlet rated by the rater in question, randomly jittered for visibility within each
of the five rating categories. The filled blue circles represent the rating of U.S. News. This figure illustrates why the mean rating of four stars by
nine users still leads U.S. News to have lower (posterior) probability of a “great” rating than many other outlets with the same number of stars
and even the Daily Utah Chronicle with a mean rating three stars from only three users. The first panel shows an uncritical user, who rates most
outlets as “great”, thereby making the “very good” rating for U.S. News less meaningful. The second panel shows that one rating of “very good”
comes from a nondiscriminating user, thereby providing little information about U.S. News.

a comparison of our model-based starplot and model-based
barplot to a traditional simple (non-model-based) starplot.

The left panel of Figure 1 provides ratings essentially as they
would be presented on the Mondo Web site—without statistical
adjustments. We present ratings for only a small subset of out-
lets to illustrate out presentational approach, not to draw sub-
stantive inferences about particular outlets. The number of solid
stars represents the rounded mean rating, adjoined by the total
number of ratings submitted in parentheses. The center panel
depicts the comparable model-based starplot while the right
panel depicts the model-based barplot. Differences readily ap-
pear. U.S. News & World Report, which receives a Mondo rating
of four stars, may in fact have lower quality content than PBS
and the Great Falls Tribune, each of which also received four
stars and Colorado Public Radio which was only rated by two
raters. Indeed, U.S. News may even have lower content qual-
ity than the Toronto Star, CNN, and the Daily Utah Chronicle,
despite these outlets’ lower Mondo ratings of three stars. To un-
derstand the intuition for the statistical adjustments, Figure 2
plots the observed ratings for two raters of U.S. News. Each
panel represents all ratings submitted by two raters on the y-
axis (randomly jittered for visibility) and the (posterior mean of
the) latent content quality as estimated from the IRT model on
the x-axis. The first panel shows that U.S. News was rated by
a noncritical user, who rated more than two thirds of all outlets
as “great” (i.e., better than U.S. News). If anything, from this
user’s rating of “very good” we learn that U.S. News may be
worse than the majority of outlets rated. The second panel plots
a user who is largely nondiscriminating, failing to distinguish
high and low content outlets in any systematic way compared
to the majority of Mondo users. Intuitively, we learn little from
such users, as a rating of “very good” does not distinguish the

outlet meaningfully. Little information is conveyed by such sub-
missions and our understanding of the quality of U.S. News—
despite its four-star Mondo rating—remains diffuse.

On the other hand, it is possible for a great deal of informa-
tion to be provided by a small number of ratings. The second
row of Figure 1 depicts the rating information for Colorado
Public Radio. Only two users rated CPR, but both rated it as
“great.” Standard Web site presentations of the mean rating and
the number of ratings might cause users to discount this five-
star rating as due to chance variability. However, after account-
ing for inter-rater differences, the posterior probability that this
outlet is of very high quality remains substantial, as indicated
by the dark shading of the fifth star in the center panel of Fig-
ure 1 and the high probability of a “great” rating in the right
panel of Figure 1. Figure 3 provides some intuition for this in-
ference. Here we see that both of the raters in question rated a
large number of news outlets and both do an excellent job of
discriminating between low and high quality outlets. As such,
their high marks for this outlet provide considerable informa-
tion.

Finally, the center and right panels of Figure 1 also illustrate
that we have considerable uncertainty about the relative quality
of news outlets, particularly in the middle range from rows 4–9
(spanning the Toronto Star, CNN, the Daily Utah Chronicle, the
San Diego Union Tribune, U.S. News, and Montana Magazine).
The probabilities for these outlets are substantially similar to the
prior distribution (i.e., the marginal distribution of ratings with-
out any knowledge about the outlet). This uncertainty stands
in sharp contrast to the standard presentation in the left panel,
where stars range from 2–4 for those outlets. Despite the large
number of ratings submitted for CNN, there is considerable het-
erogeneity within those ratings, leading us to be largely uncer-
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Figure 3. All ratings submitted by the two raters, both of whom rated Colorado Public Radio in row 2 of Figure 1. Each panel depicts data
from a single rater. Each circle in each panel represents a news outlet rated by the rater in question, randomly jittered for visibility within each
of the five rating categories. The filled blue circles represent the rating of Colorado Public Radio. This figure illustrates how, even with only two
ratings, the (posterior) probability that this news outlet would be rated “great” is quite high. Note that both raters rated many outlets and both
raters are very good at distinguishing low and high quality news outlets.

tain as to how a randomly chosen user would rate CNN. The
statistical adjustment and presentation ensure that users are not
left with a false sense of precision as to the quality of outlets.

In short, as is well-known from the IRT literature, statistical
uncertainty, rounding errors, and inter-rater differences can have
substantial impacts on the interpretation of ratings. Fortunately,
meaningful results can be intuitively displayed in our proposed
model-based plots.

4. VALIDATING THE APPROACH

Although the theoretical advantages of the approach de-
scribed above should be clear, there are at least two practical
concerns that might be raised. First, one might hypothesize that
Internet users will not be able to decode the new figures cor-
rectly and thus the figures will be no more effective at conveying
accurate information than more standard visual displays. Sec-
ond, one might be concerned that since model-based figures, by
their very nature, rely on modeling assumptions, such figures
may end up being much worse than more standard model-free
figures in the real world where such assumptions do not hold.

We address both of these concerns here. In Section 4.1 we
detail a large experiment we conducted to assess how real In-
ternet users perform at decoding several visual depictions of
ratings data. This experiment is similar in spirit to those con-
ducted by Cleveland and McGill (1985, 1987); Wainer et al.
(1999), and others. The results strongly suggest that our model-
based figures provide more interpretable information than ex-
tant approaches. In Section 4.2 we examine how our model-
based approach fares against seemingly model-free approaches
when the missing data mechanism depends on either the latent
product quality, rater attributes, or the ratings themselves. Our
results suggest that while our model is not immune to specifi-
cation bias, it performs considerably better than approaches that

simply tally the observed ratings with no statistical adjustments.

4.1 An Experiment in Graphical Perception

To assess how real Internet users decode various visual repre-
sentations of ratings data we conducted an experiment in which
the subjects were all undergraduate students with valid e-mail
addresses at Harvard University. The experiment was conducted
as follows.

First, we fit the model discussed in Section 3.1 to the Mondo
Times data analyzed in Section 3.3. We then calculated the
posterior means of all model parameters and generated a new
dataset under the assumption that these estimated parameter val-
ues are the true parameter values. All missing elements of Y in
the original Mondo Times data remained missing in the simu-
lated data. We then chose eight products from the synthetic data,
labeled them products 1 through 8, and devised six graphical
displays of the synthetic ratings of these eight products. Each
of these six displays represents a treatment arm, each contain-
ing the same eight products from the same underlying data. The
only aspect varying across the treatments is the visual display.

Treatment 1, displayed in Figure 4, corresponds to the “sim-
ple starplot” that is formed by simply taking the rounded mean
rating, filling in that number of stars, and then noting the num-
ber of ratings of the product in question in parentheses to the
right. As noted above, this type of display is widely used to
present online ratings data. Treatment 2 is a “simple barplot”
that plots the observed fraction of ratings in each of the five
possible categories for each product using a barplot. Although
such plots are uncommon, some Web sites, such as Amazon,
have started to use them in conjunction with the simple starplot.
No model-based adjustments are performed in either treatment
1 (the simple starplot) or treatment 2 (the simple barplot).

The remaining four treatments all make use of the same IRT

284 Interdisciplinary: Information Science



Figure 4. Treatment 1 (simple starplot) from the graphical perception
experiment.

adjustment discussed in Section 3.1. All four of these figures
plot τpc for all eight products and all five rating categories. The
only differences among these plots is how they display this in-
formation. Treatment 3 is a “model-based barplot” in which the
height of the cth bar for product p is τpc. The remaining three
treatments are all what we have called “model-based starplots”
in that they use the color of the cth star for product p to rep-
resent τpc. Treatment 4, the “model-based starplot (orange),”
uses a color scale that is very pale blue from 0 to about 0.2, is
then increasingly dark blue from 0.2 to 0.45, and then becomes
increasingly orange at points above approximately 0.45. Treat-
ment 5, the “model-based starplot (black)” displayed in Figure
5, is identical to treatment 4 except that orange has been re-
placed by black. Finally, treatment 6, the “model-based starplot
(mono blue)”, uses a color scale this is essentially linear in blue.

Subjects were randomly assigned to one of these figures.
They were then asked six questions about the products, shown
in Table 2 (with correct answers underlined). The correct an-
swer is defined to be the one that has the highest probability
of being correct under the posterior distribution based on a cor-
rectly specified ordinal IRT model. Using the true parameter
values that generated the data to determine the correct answer
yields the same correct answers for questions 1–5. For question
6, product 1 has a true quality level most similar to product 5.

The pool of subjects consisted of 6,454 undergraduate stu-
dents at Harvard University with valid e-mail addresses as of
January 1, 2008. Each treatment was randomized to 1/6 of the
subject pool. To minimize day-specific response effects, stu-
dents within each treatment arm were contacted daily over a
period of seven days. On any given day, six treatment groups

of 153 or 154 students were contacted (6 treatments × 7 days
× 153 or 154 = 6454). The overall fraction of students who
responded to at least one question was around 0.10. Response
rates were comparable across treatments. Further details are
available from the authors.

The quantities of interest in this experiment are the probabil-
ities of a subject’s answering questions correctly. Operationally,
we define this to be the probability that a student who answers
at least one of the six questions answers the question of inter-
est correctly. We are interested in how these probabilities vary
with treatment assignment. Figure 6 displays posterior mean es-
timates of these probabilities (based on a binomial model with
Jeffreys prior) along with 95% credible intervals.

These results provide very strong evidence that the standard
non-model-based figures (the simple starplot and the simple
barplot) make it very difficult for users to correctly infer the
relative quality of products. For instance, the probability of
correctly answering question 1 after seeing either the simple
starplot or the simple barplot was less than 0.2. We find sim-
ilar results for the simple starplot subjects on questions 5 and
6. Subjects exposed to the simple barplot fared slightly better,
but were still not as accurate as subjects seeing the model-based
figures. The model-based figures that lead to the greatest accu-
racy are the barplot and the two starplots featuring a nonlin-
ear color scale (model-based starplot (orange) and model-based
starplot (black)). Subjects exposed to these figures performed
well on all of the questions, with probabilities of correct an-
swers typically well above 0.75 and in some cases very close
to 1.0. There is slight evidence that the model-based barplot is
easier for subjects to decode than the model-based starplots, al-

Figure 5. Treatment 5 (model-based starplot (black)) from the graph-
ical perception experiment.
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Table 2. Questions asked of all respondents in survey experiment varying graphical display. Correct answers are underlined.

1. Which product do you think is most likely the worst? 1,2, 3, 4, 5, 6, 7, 8, don’t know
2. Which product do you think is most likely the best? 1, 2, 3, 4, 5, 6, 7, 8, don’t know
3. Is 8 likely better than 5? yes, no, don’t know
4. Is 1 likely better than 6? yes, no, don’t know
5. Is 3 likely better than 4? yes, no, don’t know
6. Which product is most similar in quality to product 5? 1, 2, 3, 4, 6, 7, 8, don’t know

though the probabilities of a correct answer from model-based
starplot (orange) and model-based starplot (black) are generally
quite close to those from the model-based barplot. In general,
the experiment strongly suggests that any of these three model-
based figures would be a substantial improvement over the sim-
ple starplot commonly used on Web sites. Further, it appears
that most of the benefit is coming from the use of a model-based
adjustment as opposed to a particular plot.

4.2 Exploring Relative Performance With Synthetic Data

To assess how our proposed model-based methods perform
when the model is misspecified, we generated ten synthetic
datasets under different missing data mechanisms. We then
compare our approach relative to the truth as well as simple non-
model-based methods. These departures from the basic model
could be consistent with either behavioral regularities of real
raters or, in some cases, attempts by raters to game the ratings
system. All ten synthetic datasets feature 1,000 raters and 500
products. The complete data Y are generated according to

θ true
p

iid
∼ N (0, 1) for all p ∈ P

αtrue
r

iid
∼ N (0, 1) for all r ∈ R

β true
r

iid
∼ N (1, 0.5) for all r ∈ R

y∗pr = αtrue
r + β true

r θ true
p + εpr

εpr
iid
∼ N (0, 1) for all p ∈ P, r ∈ R

ypr =






1 if y∗pr ≤ −1.5

2 if y∗pr ∈ (−1.5,−0.5]

3 if y∗pr ∈ (−0.5, 0.5]

4 if y∗pr ∈ (0.5, 1.5]

5 if y∗pr > 1.5.

Each of the ten synthetic datasets begins with exactly the
same complete data dataset. What differentiates the ten syn-
thetic datasets is the missingness mechanism. Here the data
were either missing completely at random or the missingness
depended on θθθ , ααα, or Y. Full details are available from the au-
thors.

To generate the dataset in simulation 1 we assume:

z pr
iid
∼ Bernoulli(0.9).

Thus, approximately 10% of the complete data observations
will be included in the simulation 1 dataset and these inclusion
probabilities are constant across all rater-product observations.
This scenario is an optimistic scenario for model-based analy-
sis, as each rater rates approximately 50 products and each prod-
uct is rated by approximately 100 raters.

The synthetic dataset of simulation 2 is generated in a sim-
ilar manner except that the probability of missingness is much
higher:

z pr
iid
∼ Bernoulli(0.99).

Here, only about 1% of the rater-product observations will be
included. The median number of ratings per rater is 5 (5th per-

Figure 6. Posterior mean estimates of the probabilities of a correct response to each of six evaluation questions by treatment figure. Dark lines
represent central 95% credible intervals. These estimates are based on a binomial model with Jeffreys prior.
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centile equal to 2 ratings and 95th percentile equal to 9 ratings)
and the median number of ratings per product is 10 (5th per-
centile equal to 5 ratings and 95 percentile equal to 16 ratings).
This degree of missingness is much more realistic than that used
in simulation 1.

The synthetic dataset of simulation 3 was generated so that
the missingness probabilities depended on θ true:

z pr
iid
∼ Bernoulli(1−8(−2.5+ 0.3 ∗ |1+ θ true

p |)).

Here, there is an asymmetric U-shaped relationship between la-
tent product quality and the probability of inclusion, with high
and low quality products more likely to be observed than mid-
quality products. High-quality products are also more likely to
be observed than low-quality products. This represents a situa-
tion where raters are more likely to rate good than bad products,
and more likely to rate bad than average products. The median
number of ratings per rater is 9 (5th percentile equal to 5 ratings
and 95th percentile equal to 15 ratings) and the median number
of ratings per product is 15 (5th percentile equal to 5 ratings and
95th percentile equal to 50 ratings).

Data for simulation 4 were generated in a similar fashion ex-
cept that the missingness probabilities depend on αtrue rather
than θ true:

z pr
iid
∼ Bernoulli(1−8(−2.5+ 0.5 ∗ |αtrue

r |)).

Again the relationship is U-shaped, although here the inclusion
probabilities are symmetric around 0. This mechanism captures
a situation where easy-to-please and difficult-to-please raters
(high and low α’s, respectively) are more likely to rate prod-
ucts than other raters. The median number of ratings per rater is
8 (5th percentile equal to 2 ratings and 95th percentile equal to
29 ratings) and the median number of ratings per product is 21
(5th percentile equal to 15 ratings and 95th percentile equal to
29 ratings).

Missingness for simulations 5–8 was based on the ac-
tual values of ypr rather than the model parameters. The
missingness indicators for these datasets were generated

z pr
iid
∼ Bernoulli(πpr ) where πpr varied with ypr , as displayed

in Table 3. Simulation 5 represents a situation where raters who
perceive a product as high quality are much more likely to rate
that product. Simulation 6 represents a scenario in which raters
who perceive a product to be either very bad or very good are
more likely to rate that product. Simulation 7 is similar to sim-
ulation 6 except that products perceived to be good are some-
what more likely to be rated than products perceived to be bad.
Finally, simulation 8 represents a situation in which raters pri-
marily use a subset of the five-point scale (ratings 1, 3, and 5)
and products perceived to be good are more likely to be rated.

Simulations 9 and 10 feature extremely low amounts of ob-
served data for each rater and product. In each simulated dataset
the number of raters who are observed to rate a given product is
1 plus a Poisson random variable with mean 5. In simulation 9
these raters are chosen from the set of all 1,000 raters with equal
probability. In simulation 10 the raters who are observed to rate
product p are chosen from the set of all raters with probability
proportional to ypr for all r ∈ R. In each simulated dataset the

Table 3. Probability of missingness πpr as a function of ypr for sim-
ulated datasets 5 through 8.

Sim 5 Sim 6 Sim 7 Sim 8

ypr = 1 πpr = 0.99 πpr = 0.90 πpr = 0.95 πpr = 0.975
ypr = 2 πpr = 0.99 πpr = 0.99 πpr = 0.99 πpr = 0.99
ypr = 3 πpr = 0.99 πpr = 0.99 πpr = 0.99 πpr = 0.975
ypr = 4 πpr = 0.95 πpr = 0.99 πpr = 0.99 πpr = 0.99
ypr = 5 πpr = 0.90 πpr = 0.90 πpr = 0.90 πpr = 0.95

median number of ratings per rater is 3 (5th percentile equal to
1 rating and 95th percentile equal to 6 ratings) and the median
number of ratings per product is 6 (5th percentile equal to 3
ratings and 95th percentile equal to 10 ratings).

Once Yobs was generated under each of these ten scenarios,
the ordinal IRT model of Section 3.1 was fit to each dataset and
quantities of interest were calculated.

First, we are interested in the extent to which the model is
able to recover basic information about the true underlying qual-
ity of each of the products (e.g., how sensitive the results are
to forms of strategic rating). Intuitively, the IRT adjustment re-
moves common forms of strategic rating, such as users rating
only several favored outlets at the highest value. To gauge this
more systematically, we calculate the Spearman rank order cor-
relation between θ true and the posterior mean of θ . These cor-
relations are quite high—always above 0.8 and typically above
0.9. This is the case even when there is a large fraction of miss-
ing data and the missing at random assumption does not hold.

Next we look at how the model-based method performs rela-
tive to the simple non-model-based methods that are commonly
used. Let

τ raw
pc =

1
∑

r∈R(1− z pr )

∑

{r : z pr=0}
I(yobs

pr = c)

denote the observed fraction of ratings of product p equal to
c. This is the measure that is used to construct the non-model-
based barplot. Further, let

τ true
pc =

1

|R|

∑

r∈R

I(ypr = c)

denote the true fraction of ratings of product p equal to c in the
complete data. This quantity is an in-sample baseline that we
would like any method to approach.

With these quantities defined we can define the average per-
centage reduction in absolute in-sample error for rating category
c as:

100×
1

|P|

∑

p∈P

∣
∣
∣τ true

pc − τ
raw
pc

∣
∣
∣−

∣
∣
∣τ true

pc − τpc

∣
∣
∣

∣
∣
∣τ true

pc − τ raw
pc

∣
∣
∣

,

where τpc is defined by Equation (2). This quantity tells us how
much closer to the in-sample ideal the model-based approach
comes than the simple unadjusted in-sample fraction. A value
of 100 indicates that all of the absolute error in τ raw

pc is removed
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by the model-based approach. A value of 50 indicates that half
the absolute in-sample error has been removed.

Looking at the average percentage reduction in absolute in-
sample error for all the rating categories in the 10 synthetic
datasets we see that the model-based approach almost always
removes a large—typically between 20% and 60%—amount
of the absolute in-sample error in the simple unadjusted aver-
ages. The model-based approach performs relatively well across
a range of missing data mechanisms—including those that are
not consistent with the assumptions that motivated the model.
Additional details are available from the authors.

5. DISCUSSION

In this article we presented and validated simple model-based
methods of displaying ratings data—such as are commonly
found on Internet sites. Our refinement of basic plots that are
already used by the majority of all ratings Web sites, has the
promise to better communicate relevant statistical information
to everyday users of Web sites, thereby encouraging the sophis-
ticated consumption of goods and services.

That said, there are limitations to our approach. First, our
model-based approach dramatically downweights the ratings
from users who have only rated a few products. In some ap-
plications, such raters will comprise a large fraction of the set
of all raters. In situations where there are not important inter-
rater differences, discarding the ratings of these raters can be
detrimental.

Second, although our approach does account for some forms
of statistical uncertainty (namely those that arise from sam-
pling variability and rater-specific differences) there are other
sources of variability that are not incorporated. The actual miss-
ing data mechanism may be quite complicated and failing to
correctly model this likely makes the results of our approach
falsely precise. Nonetheless, our simulation experiments sug-
gest that our method performs relatively well compared to stan-
dard non-model-based approaches even when the missing data
mechanism is misspecified.

Finally, and perhaps most importantly, the model-fitting ap-
proach employed in this article would have to be modified to
work efficiently on an industrial scale. Luckily, the sparseness
of the underlying ratings data, while unattractive from a purely
statistical point of view, may be beneficial for real-time estima-
tion of the model. Since most of the potential ratings are un-
observed it will be the case that many of the model parameters
will be nearly a posteriori independent. This makes it possi-
ble to use efficient deterministic approximation algorithms to
adjust the model parameters in real-time as new ratings arrive.
See Bishop (2008) for an introduction to such ideas and Her-
brich et al. (2007) for a large-scale application involving player
rankings.

[Received June 2007. Revised August 2008.]
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