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The view that biotechnology patenting has reached unsustainable levels is well accepted 
among many legal scholars.  This Article presents the first comprehensive empirical 
study of biotechnology patents designed to test this hypothesis.  Our analysis reveals the 
striking rise and fall in biotechnology patenting, the surprisingly diffuse pattern of patent 
ownership, and the consistent influx of new entrants conducting biotechnology research 
and development.  This Article finds little evidence that the rise in biotechnology 
patenting is adversely affecting innovation.  Counting patents, as it turns out, offers few 
insights on its own.  One must also have a measure of the geographic scope of the 
scientific commons and the distribution of patents within it.  These findings lead to a 
cautionary corollary for patent metrics generally—certain fundamental uncertainties 
associated with the statistics of innovative success cannot be overcome using even the 
most sophisticated empirical methods.  Ironically, the current enthusiasm for empirical 
work may have caused academics to reify simple patent metrics over the manifest 
complexity of innovative processes. 
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I. Introduction 

The debate over the dramatic rise in patents issued each year in the United States springs 

from a deceptively simple question: Do we have too much of a good thing?  For many 

commentators, the numbers speak for themselves.1  As Jon W. Dudas, Director of the Patent and 

Trademark Office (“PTO”), remarked recently, “the PTO issued more patents last year [] than it 

did during the first 40 years of its existence.”2  Yet, the economic theory that frames this debate, 

the tragedy of the (anti)commons, is a matter of relative scale—fifty patents distributed over a 

narrow field of invention may be grounds for concern whereas fifty patents of analogous scope 

scattered over a broad field will not.3  Large numbers alone are thus meaningless.  One must 

have a measure of the geographic scope of the relevant scientific commons and the distribution 

of patents within it to assess the impact of rising patent numbers.   

Patent metrics are central to the debate over the 1990s patent bubble.  The simplest 

metric, patent counts, has dominated theorizing about the effects of the extraordinary rise in U.S. 

patenting on innovation.  The most prominent example of this approach, Michael Heller and 

Rebecca Eisenberg’s beguilingly elegant “anitcommons” theory, posits that transaction costs 

spiral out of control as patent numbers increase.4  Other patent metrics, such as the number of 

claims or citations in a patent, are also important, most notably as indicators of patent value.  

Commentators have proposed that patent characteristics be used by the PTO as metrics for 
                                                 
1  See, e.g., Michael A. Heller & Rebecca S. Eisenberg, Can Patents Deter Innovation? The Anticommons in 
Biomedical Research, 280 SCIENCE 698, 698 (1998) (arguing that the recent surge in patenting will harm innovation 
by creating “anti-commons” that threaten innovation by fatally raising the transaction costs of research and 
development); Rebecca S. Eisenberg, A Technology Policy Perspective on the NIH Gene Patenting Controversy, 55 
U. PITT. L. REV. 633, 640 (1994). 
2  The Patent System Today and Tomorrow Before Subcommittee on Intellectual Property of the Senate 
Committee on the Judiciary, 109th Cong. 3 (2005) (statement of John W. Dudas, Under Secretary of Commerce for 
Intellectual Property and Direct of the U.S. Patent and Trademark Office). 
3  Carol Rose, Rethinking Environmental Controls: Management Strategies for Common Resources, 1991 
DUKE L.J. 1, 5-7 (arguing that government-imposed restrictions are not warranted when a commons is uncongested); 
David E. Adelman, A Fallacy of the Commons in Biotech Patent Policy, 20 BERKELEY TECH. L.J. 985, 1021-23 
(2005) (arguing that the tragedy of anticommons also disappears if a commons is uncongested). 
4  Heller, supra note 1, at 698. 
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enhancing the efficiency of PTO reviews and reducing the burden of rising patent application 

numbers.5  Patent metrics thus play an integral role in efforts to diagnose and mitigate the 

impacts of the recent surge in U.S. patenting.  

This Article challenges the widely held belief that the rapid growth in biotechnology 

patenting over the last decade is impeding innovation.  It argues that the misuse of patent metrics 

has both fostered dire predictions and created unrealistic expectations about the capacity of 

patent data to guide policy.  The Article’s focus on biotechnology is motivated by its singular 

role in the debate—for many commentators, biotechnology is the proverbial canary in the coal 

mine signaling the need for major reforms.6  The unique status of biotechnology follows from the 

extensive overlap between public and private biotechnology research, the importance of patents 

to the biotechnology industry, and the high social value accorded to biomedical research.7  These 

traits have dramatized the tensions between the ownership model of patent law and the open-

access principles of science. 

The centerpiece of the Article is a comprehensive empirical study of biotechnology 

patenting in the United States.8  Contrary to much legal scholarship, the study finds little 

evidence that the recent growth in biotechnology patenting is threatening innovation.  This 

                                                 
5  John R. Allison, et al. Valuable Patents, 92 GEO. L.J. 435, 439, 464-65 (2004). 
6  Arti K. Rai & Rebecca S. Eisenberg, Bayh-Dole Reform and the Progress of Biomedicine, 66 L. & 
Contemp. Probs. 289, 291 (2003). 
7  James Bessen & Michael J. Meurer, Lessons for Patent Policy From Empirical Research on Patent 
Litigation, 9 Lewis & Clark l. Rev. 1, 13 (2005) (observing that biotechnology is uniquely important to universities 
and is the primary field in which technology transfer is heavily reliant on patents). 
8  Very few data of any kind were available until the late 1990s when several major studies were initiated, 
including the following: Bronwyn H. Hall, et al., The NBER Patent Citations DATA File: Lessons, Insights and 
Methodological Tools, Working Paper 8498, available at http://www.nber.org/papers/w8498; John R. Allison & 
Mark A. Lemley, Who’s Patenting What? An Empirical Exploration of Patent Prosecution, 53 VAND. L. REV. 2099 
(2000); Kimberly A. Moore, Judges, Juries, and Patent Cases—An Empirical Peek Inside the Black Box, 99 Mich. 
L. Rev. 365 (2000-01); Jonathan A. Barney, A Study of Patent Mortality Rates: Using Statistical Survival Analysis 
to Rate and Value Patent Assets, 30 AIPLA Q.J. 317 (2002); Jean O. Lanjouw & Mark Shankerman, Enforcement of 
Patent Rights in the United States in PATENTS IN THE KNOWLEDGE-BASED ECONOMY 145 (Wesley M. Cohen & 
Stephen A. Merrill, eds., 2003); Allison, supra note 5, at 435; Josh Lerner, Patenting in the Shadows of Competition, 
38 J.L. & ECON. 463 (1995). 
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analysis is based on a dataset comprised of biotechnology patents granted in the U.S. from 

January 1990 through December 2004, more than 52,000 patents in all.9  The years encompassed 

by the dataset offer a rich context for examining patent policy.  The data cover the period of the 

most dramatic rise in biotechnology patenting, important shifts in PTO policy towards more 

stringent standards for obtaining patents on genetic sequences, and the dramatic growth followed 

by a significant retrenching of the biotechnology financial markets during the late 1990s.10  

The study examines several categories of data, including investigations of broad patent 

trends, patterns of patent ownership, and the distribution of patents across PTO patent 

subclasses.11  One of the Article’s most significant findings is the degree to which ownership of 

biotechnology patents is diffuse.  Even the largest companies, on average, are granted fewer than 

thirty biotechnology patents per year, and the number of entities obtaining biotechnology patents 

has consistently increased over the fifteen years covered by the dataset.12  Interpreting these 

trends is necessarily impressionistic, but the lack of concentrated control, rising number of patent 

applications, and the continuous record of new market entrants provide strong evidence that 

biotechnology patenting is not adversely affecting innovation.   

These results are consistent with the growing schism between current theorizing about 

biotechnology patenting and recent empirical work.  The existing empirical studies find few clear 

signs that the patenting of biotechnology inventions is adversely affecting biomedical 
                                                 
9  The biotechnology patent database consists of 52,039 patents that issued between January 1990 and 
December 2004.  These patents were collected from a larger patent database consisting of all patents, more than 
950,000 in total, that issued between January 1990 and March 2005.  See infra Appendix A. 
10  Ashish Arora, et al., MARKETS FOR TECHNOLOGY: THE ECONOMICS OF INNOVATION AND CORPORATE 
STRATEGY 67 (2001) (observing that equity financing of biotech companies declined significantly between 1997 and 
1998); see infra Part II.A. (describing the PTO changes to its regulations regarding certain types of biotechnology 
patents during the 1990s). 
11  The PTO has an elaborate system for categorizing patents into 400 broad classes and more than 120,000 
subclasses, which evolve and develop over time with technological advances.  Hall, supra note 8, at 13. 
12  These numbers are tiny in comparison to the massive patent portfolios being amassed in the information 
technology and electronics industries, where companies like IBM Corporation obtain more than one thousand 
patents each year.  Gideon Parchomovsky & R. Polk Wagner, Patent Portfolios, 154 U. Pa. L. Rev. 1, 46-48 (2005) 
(describing IBM’s strategy of obtain upwards of three thousand patents annually). 
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innovation.13  This Article shows that the divergence between data and theory is traceable to 

theorists’ over reliance on patent counts, which prove to be a very weak metric.  Heller and 

Eisenberg’s anticommons theory exemplifies this reductivism.  They predict that rising patent 

numbers will create patent anticommons, whose sheer numbers cause the transaction costs for 

licensing patents to explode.14  Heller and Eisenberg gloss over the conditions necessary for 

patent anticommons to emerge, and their vivid metaphors obscure the complexities of 

interpreting patent-count data.  In essence, they offer a one-dimensional model premised on a 

simple relationship existing between patent counts and transaction costs.  

Little reason exists for accepting the highly simplified model implicit in Heller and 

Eisenberg’s theory.  Unlike Garret Hardin’s uniform agricultural commons for which a simple 

metric (number of cattle) was available,15 patent policy must contend with a much more complex 

environment.  Science lacks a unique set of spatial dimensions; its geography is too 

heterogeneous and multidimensional, and numerous points of reference exist from which to 

assess the distribution and size of patented enclosures.  Further, the scope of patents themselves 

is both highly variable and exceedingly difficult to quantify.  Direct patent counts, as a 

consequence, are unlikely to be consistently correlated with the fragmentation of the scientific 

commons on which their theory is predicated.  

This Article exposes a distinct set of interpretive challenges for metrics based on patent 

characteristics.  The study data display remarkably broad variances for the number of claims, 

citations made by or to a patent, and the time spent by PTO examiners prosecuting (i.e., 

                                                 
13  See John P. Walsh, Ashish Arora, and Wesley M. Cohen, Effects of Research Tool Patents and Licensing 
on Biomedical Innovation, in PATENTS IN THE KNOWLEDGE-BASED ECONOMY 285 (Wesley M. Cohen and Stephen 
A. Merrell eds., 2003); John P. Walsh, Charlene Cho, & Wesley M. Cohen, View From the Bench: Patents and 
Material Transfers, 309 SCIENCE 2002, 2002 (2005). 
14  Heller, supra note 1, at 698. 
15  Garrett Hardin, The Tragedy of the Commons, 162 SCIENCE 1243, 1244 (1968). 
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reviewing) patent applications.  To give just one example, in any given year of our study the 

number of claims in a patent ranged from one to several hundred.  The broad variances we 

observe effectively rule out using these characteristics to predict other attributes of a patent, such 

as its technological field, ownership status (e.g., government, corporation), or economic value.  

The practical ramifications of this finding are far reaching.  Chief among the issues 

implicated is fashioning an effective response to the dramatic rise in patenting, which has created 

a large backlog of patents at the PTO.16  Legal commentators have singled out the substantial 

majority of patents—some data suggest more than ninety-five percent17—that have little 

economic value as a target for economizing PTO resources.18  Under this scheme, PTO resources 

would be conserved by subjecting valuable patents to careful scrutiny and all other patents to 

light reviews.  Our analysis shows that this triage scheme is unworkable for the simple reason 

that valuable patents cannot be identified ex ante.   

This result has a noteworthy theoretical corollary.  The economist F.M. Scherer was one 

of the first people to show that innovative success is chaotic and that the distribution of valuable 

inventions defies standard statistical methods.19  A recent empirical study, “Valuable Patents,” 

challenges, at least implicitly, the empirical work on which Scherer’s findings are based.20  We 

reexamine the Valuable Patents study in light of our own data and conclude that Scherer’s work 

                                                 
16  Dudas, supra note 2, at 2. 
17  Mark A. Lemley, Rational Ignorance at the Patent Office, 95 NW. U. L. REV. 1495, 1507 (2001) 
(estimating that “the total number of patents litigated or licensed for a royalty (as opposed to cross-license) is on the 
order of five percent of issued patents”). 
18  See, e.g., Allison, Valuable Patents, supra note 5, at 439, 464-65. 
19  Fredrick M. Scherer, Firm Size, Market Structure, Opportunity, and the Output of Patented Inventions, 55 
AM. ECON. REV. 1098, 1098 (1965); Fredrick M. Scherer & Dietmar Harhoff, Technology Policy for a World of 
Skew-Distribution Outcomes, 29 RESEARCH POLICY 559, 563 (2000) (the innovation lottery “implies that it is 
difficult or impossible to achieve stable mean expectations and hence to hedge against risk by supporting sizeable 
portfolios of projects”).   
20  Allison, Valuable Patents, supra note 5, at 462 (claim that “if valuable patents can be reliably identified at 
the time of application, or at least at the time of issue, the lottery theory runs into difficulty.  At best, it becomes only 
a partial explanation”).   
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ultimately withstands the challenge.  Regrettably, this result implies that one cannot avoid the 

statistical uncertainties exposed by Scherer and other economists. 

The Article is divided into two central sections and an appendix that describes the data 

and analysis in detail.  Part II examines the general trends in biotechnology patenting, including 

patent counts, patent ownership patterns, and the distribution of biotechnology patents across 

distinct areas of research and development.  This analysis finds few tangible signs of the negative 

impacts presumed to be associated with patent anticommons.  Part III assesses the characteristics 

of biotechnology patents and evaluates our results comparatively with three recent studies of 

U.S. patents.  This analysis reveals the methodological obstacles impeding empirical work on 

patents—the uncertainties prove to be greater than Scherer estimated.  The Article concludes 

with a short discussion of opportunities for refining current empirical methods.  

II. Searching for Signs of a Biotechnology Anticommons 

The spectacular rise in patenting since the mid-1980s has inspired a flurry of writing by 

scholars concerned about its negative impacts.21  Critics of the current patent bubble, led by 

Michael Heller and Rebecca Eisenberg’s work, have cultivated a potent metaphor—the 

anticommons—to illustrate how patents can deter innovation.22  Consistent with the image 

evoked by the metaphor, these critics argue that expansive patenting fragments the scientific 

commons such that no single entity has sufficient patent stock to pursue its program of research 

and development.23 

                                                 
21  Wagner & Parchomovsky, supra note 12, at 17-18 (describing the rise in patent applications and intensity 
in the United States). 
22  The standard model for the public commons is an area (e.g., public lands, body of water) that is vulnerable 
to overexploitation by multiple actors because none of them bears the full impact of poor management.  By contrast, 
a patent anticommons impedes development because narrow patent rights are dispersed among different entities too 
broadly.  See Heller, supra note 1, at 698; Eisenberg, supra note 1, at 640. 
23  Id.  Making matters worse, Heller and Eisenberg argue that transaction costs are exacerbated by certain 
strategic behaviors and cognitive biases.  Heller, supra note 1, at 698, 700 (Licensing will fail because: transactions 
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Heller and Eisenberg draw on experience in the biomedical sciences to identify two 

scenarios in which patents unduly increase the transaction costs of research and development.  In 

the first, the presence of numerous patents owned by different entities places a prohibitive 

burden on a scientist or company to negotiate licenses to patented technologies.24  In the second, 

patents on numerous “upstream” technologies, or research tools, “act like tollbooths on the road 

to product development, adding to the costs and slowing the pace of downstream biomedical 

innovation.”25  The direct signs that (presumably numerous) localized anticommons are 

burdening a scientific field will thus be reduced scientific output (e.g., papers, patents, data) and 

rising patent licensing and equipment costs.  Indirect effects may include reduced private sector 

investment, diminished entry of new scientists and companies, and increased concentration of 

patent ownership (i.e., patent portfolio races).26  

Despite the widespread attention that the anticommons theory has garnered, few 

empirical studies are available either to confirm or refute its predictions.  The best studies have 

been conducted by social scientists, who have surveyed scientists working in the public and 

private sectors about the impacts of patents on their work.27  These studies have found little clear 

evidence that patenting of biotechnology inventions is impeding biomedical innovation.28  

                                                                                                                                                             
costs high, patents matter more in biomedical science (only drugs), lack of substitutes, strategic behavior, cognitive 
biases; skeptical about patent pools emerging). 
24  Heller, supra note 1, at 698. 
25  Id. at 699.  Critics are particularly concerned about the negative effects of patents on research tools, which 
stand to hinder subsequent research dependent on them and could lead to monopoly control of key research tools.  
See, e.g., Heller, supra note 1, at 698; Rai, supra note 6, at 295-96. 
26  Josh Lerner, Patenting in the Shadow of Competitors, 28 J. LAW & ECON. 463, 464-65 (1995) (empirical 
study claiming to show that firms avoid working in areas of biotechnology research that are the subject of numerous 
patents); Bronwyn H. Hall & Rosemarie Ham Ziedonis, The Patent Paradox Revisited: An Empirical Study of 
Patenting in the U.S. Semiconductor Industry, 1979-1995, 32 RAND J. ECON. 104, 102, 110, 121 (2001) (describing 
patent portfolio races as a byproduct of the patent anticommons characteristic of the semiconductor industry). 
27  See Walsh, supra note 13, at 285; Walsh, View From the Bench, supra note 13, at 2002. 
28  Id. 
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Setting aside often-repeated anecdotal evidence,29 no empirical studies of biotechnology 

patenting have been conducted to assess whether the anticommons scenarios predicted by Heller 

and Eisenberg are representative of the biomedical science commons. 

The lack of supporting empirical work has both conceptual and practical origins.  From 

the outset of the debate, the intuitive appeal of the anticommons theory has obscured the limited 

value of patent counts in determining whether an anticommons exists.  This perspective 

marginalizes the denominator—the scope of the field of invention at issue—by focusing 

attention on seemingly impressive patent statistics.  In so doing, the theory avoids the far more 

difficult problems entailed in defining the relevant fields of invention and identifying accurate 

metrics for the scope of the patents at issue.   

To appreciate the significance of this oversight, it is useful to return Garret Hardin’s 

seminal theory on the tragedy of the commons.  Hardin’s economic parable describes how 

individual self interest leads inexorably to unsustainable exploitation of resources held in 

common.30  When applied to intellectual property, however, Hardin’s storyline inverts because 

intellectual property is an inexhaustible, non-excludable resource.  The problem thus becomes 

inadequate internalization of positive externalities and the tragic result under exploitation of the 

resource.  The traditional remedy in both cases is privatization.  

Hardin’s theory has important shortcomings that derive from his simple model of the 

commons as a homogenous resource used by several operators for the same purpose.31  

Subsequent commentators have exposed the limits of his model by describing counter examples 

                                                 
29  See, e.g., Heller, supra note 1, at 699 (search of Lexis database that found 100 patents with the term 
“adrenergic receptor” in their claims); Rai, supra note 6, at 293-93 (discussing the Wisconsin patents on an 
important line of stem cells). 
30  Hardin, supra note 15, at 1243. 
31  Id. 
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(e.g., rivers, parks) for which privatization is not the optimal legal regime.32  They show that the 

physical characteristics of the resource and the ways in which it is exploited, e.g., consumptively 

versus non-consumptively, have important implications for selecting an efficient legal regime.33  

Above all, these examples demonstrate that policies for managing property, intellectual or 

otherwise, cannot be assessed in the abstract.  One must have a detailed understanding of the 

characteristics and uses of the underlying resource itself.   

Proponents of the anticommons theory either ignore the characteristics of the scientific 

commons altogether or base their views on questionable assumptions about it, such as that so 

called upstream patents will inevitably restrict access to essential research tools for which no 

alternatives exist.34  This neglect causes the anticommons theory to be incomplete, if not 

misleading, and may account for the divergence between the social science data and the dire 

predictions of its proponents.35   

The subsections that follow employ several complementary methods to assess the 

potential significance of the anticommons theory for biotechnology research and development.  

The first subsection explores the interplay of patent statistics, shifts in PTO policies, and 

changing economic conditions.  This analysis affords a number of insights into trends in 

biotechnology patenting and their relationships to external factors.  The second subsection 

evaluates ownership patterns of biotechnology patents and assesses the implications of the small 

portfolios found for most entities.  The third subsection argues that biotechnology, at this stage 

                                                 
32  Carol Rose, PROPERTY AND PERSUASION 140-45, 185-88 (1994); Carol M. Rose, The Several Futures of 
Property: Of Cyberspace and Folk Tales, Emission Trades and Ecosystems, 83 MINN. L. REV. 129, 150-162 (1998) 
(discussing cyberspace property regimes and arguing for limited-commons property). 
33  Rose, supra 32, at 185-88.  They have also provocatively demonstrated that efficiency is maximized for 
certain “inherently public” resources only when they are held in common, a finding that has been enthusiastically 
embraced by intellectual property scholars aligned with the open source movement.  Id. at 140-45. 
34  See, e.g., Heller, supra note 1, at 700 (suggesting that patents often cover research tools for which 
alternatives do not exist). 
35  Although, proponents do concede the difficulty of determining when patents warranted (Rai-Eisenberg, 
300; 303) (acknowledge the uncertainty that exists). 
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of its development, is generally uncongested, but finds that determining whether localized 

anticommons exist raises irreducibly complex problems for studies based on patent counts.  The 

anticommons theory is shown to be compelling in theory but elusive in practice.  

 A. The Rise and Fall of Biotechnology Patenting 

At the broadest level, we find that the number of biotechnology patents issued per year 

peaked at 5977 patents in 1998 and then declined to 4324 patents (a twenty-nine percent drop) by 

2004, see Figure 1.  The same basic progression—peak in the late 1990s followed by a flattening 

or significant decline in the number of patents issued—is mirrored in virtually all of the data.  

This trend is observed for each the five biotechnology subfields we defined, see Figure 2; 

individual PTO subclasses drawn from each of the biotechnology subfields, see Figure 3; 

collectively the thirty PTO subclasses with the highest numbers of patents, see Figure 4; the four 

groupings of biotechnology companies we created, see Figure 5; and the three categories of 

assignees (i.e., the federal government, universities, and corporations), see Figure 6.36   

The other major trends we observe concern assignee types and differences between 

biotechnology subfields.  As one would anticipate, corporate ownership of biotechnology patents 

dominates, accounting for an average of eighty percent of the patents issued from 1990 through 

2004.  However, this overall average obscures the growth, in absolute and relative terms, of 

university and government patenting over this period.37  These gains represent about a ten-fold 

                                                 
36  See Part I of the Appendix for a detailed explanation of each of these data categories. 
37  In 1990, university and government patenting accounted for fifteen percent of biotechnology patents, but 
by 1994 they accounted for twenty percent, and this has remained at that level ever since.  Our results differ 
somewhat from the results of Walsh, et al., who found that the university share of the patents issued in three key 
biomedical utility classes increased from eight to twenty-five percent between the early 1970s and the mid-1990s.  
Walsh, supra note 13, at 295. 
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increase in patents issued to universities and the federal government between 1990 and 1998-99, 

although the peak numbers were followed by a decline of more than twenty-five percent.38  

Contrary to our expectations, the division of patents between the five biotechnology 

subfields is similar for corporations, universities, and the federal government, see Figure 7.  

Corporations patent more in the proteins subfield and less in the nucleotides and immunological 

subfields, but the differences are nominal.39  Patenting of genetically modified organisms is the 

one area of substantial divergence.  Universities and the federal government received fully 

twenty-nine percent of the patents, but the absolute numbers are quite low.40  We anticipated that 

corporations would receive a higher proportion of patents covering measuring and testing 

processes, as one might expect corporations to focus on applied work, but no such differentiation 

between basic and applied patenting is observable in our data.  This finding adds credence to 

concerns that universities are very actively patenting biotechnology research tools. 

  The observed rise and fall in the number of biotechnology patents issued is consistent 

with the anticommons theory.  One could interpret the falloff in patents issued after 1999 as a 

drop in innovative output brought about by the fragmenting effects of thousands of patents and 

growing patent tolls on research and development.  The turnaround in 1999 thus could represent 

a dramatic tipping point beyond which spiraling licensing costs outweighed the incentives 

patents provide.   

                                                 
38  Universities obtained fewer than one hundred biotechnology patents in 1990, reached a high of 1101 
patents in 1999, followed by decline to 782 patents through 2004.  The federal government was issued 19 
biotechnology patents in 1990, the number peaked at 159 in 1998, and leveled off at 118 by 2004. 
39  The proportions are as follows: (1) measuring and testing processes – corporations 80%, universities and 
the government 20%; (2) protein and polypeptide sequences – corporations 84%, universities and the government 
16%; (3) nucleotide sequences – corporations 76%, universities and the government 24%; and (4) immunochemical 
inventions – corporations 75%, universities and the government 25%. 
40  This difference could be attributable to the early stage of the technology or possibly to the adverse politics 
surrounding genetically modified organisms.  As described in the Appendix, we generally excluded agricultural 
biotechnology patents and specifically patents on genetically modified plants.  See infra note 218. 
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A closer examination of the data quickly reveals the deficiencies of this simple storyline.  

For one, the number of applications received (as opposed to issued) by the PTO for 

biotechnology patents rose substantially post-1999.41  This observation on its own suggests that 

the anticommons theory cannot be accepted before eliminating several alternative explanations.   

Changing economic conditions are an obvious factor to evaluate.  The most dramatic 

decline over the fifteen-year period of the study took place in 2001,42 but this follows the peak in 

biotechnology patenting by more than a year, see Figure 1.  The 1998 slump in equity financing 

of biotechnology companies is more promising,43 as it aligns with the peak in biotechnology 

patenting.  It also runs into trouble, though.  A narrow market contraction cannot explain the 

concurrent drops in the number of biotechnology patents issued to universities and the federal 

government.44  More importantly, research and development (R&D) funding in the private and 

public sectors continued to grow after 1998.  The largest increases in R&D funding among 

public companies occurred after 1999,45 and federal funding for the life sciences climbed steadily 

through 2004.46  These trends are at odds with economic studies linking growth in R&D funding 

                                                 
41  After 1999, the number of biotechnology patent applications filed with the PTO increased by about forty 
percent.  Dudas, supra note 2, at 2.  Note that were are assuming here that the PTO’s definition of what falls within 
the scope of biotechnology is reasonably consisted with our definition.  This is not unreasonable given that we 
checked our subclasses against assigned to the PTO’s biotechnology art unit. 
42  Robert Garvin, US Pace of Job Growth Slows Questions are Raised on Recovery's Strength, BOSTON 
GLOBE, July 3, 2004, at A1 (stating that “the nation has regained about 1.5 million of the 2.7 million jobs lost in the 
economic downturn that began in early 2001.”). 
43  The biotechnology equity financing market was $8 billion in 1997 and declined to just $5.5 billion in 1998.  
Arora, supra note 10, at 67.  Econometrics analyses have found that the number of patents issued by the PTO is 
sensitive to business cycles.  Zvi Griliches, Patent Statistics as Economic Indicators, 28 J. ECON. LIT. 1661, 1693 
(1990); Josh Lerner & Robert P. Merges, The Control of technology Alliances: An Empirical Analysis of the 
Biotechnology Industry, 46 J. IND. ECON. 125, 126-7 (1998). 
44  In addition, given the more than two-year delay between the filing and issue dates of a patent, one would 
expect a significant lag-time to exist between declining economic conditions and changes in the number of patents 
granted. 
45  In the private sector, public companies increased their biotechnology R&D by about $3.7 billion dollars 
(from $7 to 10.7 billion) between 1994 and 1999, but their R&D funding was up almost another $10 billion by 2002, 
and appears to have leveled off at close to $20 billion annually.  Stacy Lawrence, Biotech Drug Market Steadily 
Expands, 23 NATURE BIOTECH 1446 (2005).   
46  It is difficult to obtain the levels of federal R&D funding for biotechnology specifically.  However, data 
reveal are available on federal funding for the life sciences and on funding for the National Institutes of Health 
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to rises in the number of patent issued.47  Faltering economics conditions are therfore unable to 

account for the late-1990s decline in biotechnology patenting.48   

1.  Tipping Points: Lagging PTO Resources and Shifting Patent Terms 

The PTO’s decision to strengthen the utility requirements in 1999 stands out as a legal 

reform that could explain the dramatic leveling off of biotechnology patenting.49  This rule 

change reversed the PTO’s 1995 decision to liberalize it’s utility guidelines, which led to much 

freer granting of patents on DNA and polypeptide sequences.50  Both the relaxing of the utility 

doctrine in 1995 and the PTO’s reversal in 1999 correlate well with the dramatic rise in 

biotechnology patenting that began in 1994 and the leveling off (or decline) that occurred in 

1998-99.51  The obvious defect in this explanation is that the changes in the utility doctrine target 

                                                                                                                                                             
(NIH), which is the primary source of government funding biotechnology R&D.  Funding for the life sciences 
increased from $15.4 billion in 1999 to $29.3 billion in 2004, and NIH funding rose from $13.0 billion in 1999 to 
$26.9 billion in 2004.  National Science Foundation, Federal Funds for Research and Development: Fiscal Years 
2002, 2003, and 2004 251, 311 (Feb. 2005) available at <http://www.nsf.gov/statistics/nsf05307/pdfstart.htm>.  
Detailed accounts of the NIH budget show funding for biotechnology specifically increasing during this period.  
NIH, Estimates of Funding for Various Diseases, Conditions, Research Areas available at 
<http://www.nih.gov/news/fundingresearchareas.htm>.  
47  Griliches, supra note 43, at 1673, 1684 (stating that a strong relationship between R&D levels and patent 
numbers).  For biotechnology, the subsidy is estimated to be twenty-five percent, that for every four dollars spent on 
R&D, on average, one would expect one patent to issue.  Jean O. Lanjouw & Mark Schankerman, Characteristics of 
Patent Litigation: A Window on Competition, 32 RAND J. ECON. 129, 130 (2001). 
48  No obvious evidence exists of scientific factors contributing to the decline in the number of patents issued.  
For one, the number of patent applications continued to increase through this period.  Dudas, supra note 2, at 2.  
More importantly, many major successes of the Human Genome Project occurred in the period after 1998 and 
important developments have continued since.  See Lesley Roberts, et al., Timeline: A History of the Human 
Genome Project, 291 SCIENCE 1195, 1195 (2001) (describing the important developments in the biological sciences 
up through 2003).  It is, however, notable that the difficulties of translating biotechnology methods into products 
have become increasingly apparent over time.  See  Robert F. Service, Surviving the Blockbuster Syndrome, 303 
SCIENCE 1797, 1799 (2004) (“The plain truth is that many of the most dramatic scientific advances that have 
recently been made in the lab have not transformed medicine.”). 
49  Heightened utility standards first promulgated in an interim form in 1999 and later finalized in 2001.  See 
Revised Interim Utility Examination Guidelines, 64 Fed. Reg. 71440 (1999); Utility Examination Guidelines, 66 
Fed. Reg. 1092 (2001).  
50  See Utility Examination Guidelines, 60 Fed Reg. 36263, 36264 (1995) (requiring the utility of an invention 
to be “credible” or “well established”).  The rule change was motivated by patents on DNA sequences that were 
being sought when no knowledge of their actual function was known.  Id.  The primary effect of the rule was to 
preclude patents on DNA or protein sequences lacking any well-defined function or utility.  Id.   
51  Data on specific PTO subclasses that cover protein sequences, polypeptides, DNA/RNA fragments, and 
nucleotide sequences follow a similar path of leveling off or decline, see Figure 2.  Interestingly, we do not observe 
a perfect alignment with the shift in policy.  In at least one important subclass, large polypeptides, the decline 
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a subset, albeit an important subset, of biotechnology inventions.52  Yet, the same trend is 

observed for biotechnology inventions that do not directly claim isolated nucleotide or 

polypeptide sequences, see Figure 2.   

On its face, the narrow scope of the change in the utility guidelines suggests that it cannot 

possibly explain the rise and fall in biotechnology patenting that occurred during the 1990s.  

However, if the PTO’s move first to liberalize and then to strengthen its utility guidelines 

represented a general policy to relax standards followed by a renewed vigilance in reviewing 

biotechnology patent applications, it could explain, at least partially, the late-1990s inflection.  

Moreover, if these changes did in fact reflect a broader shift in PTO policy, more stringent 

review of biotechnology patents would likely impact the average time for patent prosecutions 

and the rate of patent application denials, both of which are measurable.   

We do in fact observe a significant increase (about a year) in the average prosecution 

time during this period.53  Evidence also exists that denials of biotechnology patents increased 

after 1999—the number of biotechnology patent applications filed with the PTO increased by 

about forty percent while the number of biotechnology patents issued declined by almost thirty 

percent.54  The striking temporal correlation and apparent rise in the number of application 

denials for biotechnology patents support an inference that the shift in PTO policy contributed to 

the observed decline in the number of biotechnology patents granted.   

                                                                                                                                                             
actually precedes the change in PTO policy, and in another, polynucleotide sequences, the decline does not occur 
until 2002.  Both of these deviations suggest that other factors must also be important, such scientific or economic 
factors that altered the value of such patents.  The delayed impact on nucleotide sequences patents is particularly 
anomalous, though, given that once the PTO policy went into effect, it presumably affected all pending patents. 
52  This change in PTO guidelines is also confounded by the 1997 case Regents of the University of California 
v. Eli Lilly & Co., 119 F.3d 1559 (Fed. Cir. 1997), which substantially narrowed the scope of patents on proteins and 
nucleotide sequences.  Id. at 1562.  This substantial narrowing of scope would have two counterbalancing effects.  
On one hand, it necessitated inventors obtaining more patents, as a single patent could no longer cover a broad class 
of related compounds; on the other, it lowered the effective value of an given protein or nucleotide patent. 
53  See infra Part II.A. 
54  Dudas, supra note 2, at 2. 
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Two transient factors, however, appear to be much more important influences on the 

declining patent numbers.  First, the change in June 1995 from the seventeen-year patent term to 

the twenty-year term caused a large jump in biotechnology patent applications—4602 

applications were filed in 1994, 7626 in 1995, and 4045 in 1996.55  This discontinuity magnified 

the rise in patents issued during the late 1990s and, as a one-time infusion of applications, 

contributed to the leveling off and decline observed post-1998.56   

Second, the falloff in biotechnology patents issued likely reflects a saturation of examiner 

resources.  In other words, the PTO cannot process more biotechnology patents, such that the 

rate-limiting step in issuing patents is no longer inventive output but the PTO itself.  Tellingly, 

this predicament is not unprecedented.  In the 1970s, the leveling off and slight decline observed 

at that time in the total number of patents issued was traced back to inadequate PTO resources.57  

Circumstantial evidence also supports this theory now.  The existence of a resource shortfall is 

consistent with recent calls from the PTO for more resources and growing alarm about the 

backlog of patents waiting for review.58   

Several factors undoubtedly account for the decline in biotechnology patents issued each 

year.  Although our data cannot resolve the key causative factor unequivocally, we suspect that 

the shortage in PTO resources is, as in the 1970s, the dominant factor.  Even ignoring the much 

larger total number of biotechnology patent applications filed with the PTO, the highest number 
                                                 
55  The rush to file before the shift to the twenty-year term is predictable given the extended development 
process, particularly the rigorous regulatory hurdles, that occurs after a patent application for most biotechnology 
inventions if filed.  Because of this, the seventeen-year term, which is measured from the patent issue date, typically 
affords patentees a term that is effectively longer, particularly if the patentee takes measures to prolong the patent 
review process. 
56  The jump in 1995 patent applications also aligns well with the peak in issued patents that occurred in 1998, 
consistent with the two- to three-year time for patent reviews by the PTO.  The number of patent applications begins 
to rise again starting in 1997 and hits a second peak of 6972 applications in 1999.  This is probably not a real peak, 
as our data omit patents that issued after 2004 and aggregate statistics from the PTO indicate that patent applications 
continued to rise throughout the period covered by our study.  Dudas, supra note 2, at 2. 
57  Griliches, supra note 43, at 1691 (discussing the gradual realization that the perceived draught in 
innovation during the 1970s was attributable to a lack of PTO resources).  
58  Dudas, supra note 2, at 2. 
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of biotechnology patents issued in a year, about 5900, is far lower than the numbers of 

biotechnology patents filed in 1995, 1999, and 2000 that also ultimately issued.  These data 

suggest that the PTO’s maximum review capacity lags current application rates by hundreds of 

patents, which, consistent with our data, would effect all categories of biotechnology patents.  

This explanation has the virtue of being simple and, particularly given that biotechnology patent 

applications have continued to rise, it is also more plausible than the scenario predicted by the 

anticommons theory.  

2.  (Relatively) Low Patent Rates for Genes and Proteins 

The anticommons debate has fixated on gene patents.  Yet, the biotechnology subfield 

with by far the largest number of patents is measuring and testing processes.  This subfield 

accounts for almost fifty percent of the biotechnology patents granted from 1990 through 2004, 

and it has the single most-populated PTO subclass (approximately eleven percent of the total), 

“measuring and testing processes involving nucleic acids.”59  Patents specifically directed at 

nucleotide sequences and genetically modified organisms account for only nine percent and three 

percent, respectively, of the total.60  At the mid-level, patents on protein sequences and 

immunological inventions account for about twenty-six percent and twelve percent, respectively.  

The specific types of inventions that dominate biotechnology patenting include the 

following: 

• Measuring & testing devices (e.g., involving nucleic acids, viruses, bacteria, enzymes, 
microorganisms) 

                                                 
59  More than 6100 patents were granted in PTO subclass 435/6 between 1990 and 2004, and from 1998 
through 2004 an average of approximately 600 patents were granted in this subclass each year.   
60  These numbers do not reflect all patents that cover genetic or protein sequences.  Most importantly, patents 
on measuring and testing processes will sometimes cover genetic and protein sequences.  Patents on genetic testing 
devices, for example, will often cover specific genetic probes.  While significant, we believe that these patents are 
unlikely to cover the most valuable genetic and protein sequences, for it would make no sense for a patentee to limit 
her patent protection to the use of the sequence in a device and not patent it separately.  
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• Methods for making proteins & polypeptides61 (e.g., microorganisms, molecular vectors) 
• Polypeptides of various lengths and protein sequences (e.g., enzymes) 
• Polynucleotides of various lengths and DNA/RNA fragments62 
• Polymerase chain reaction (PCR)-related methods63 
• Immunological testing methods (e.g., monoclonal antibody-based methods) 

 
Patents on complete gene sequences are notably absent from this list.  Moreover, while gene 

fragments are among the more highly patented biomolecules, the absolute number of patents 

issued per year recently has been, on average, fewer than 800 patents.64  A similar trend is 

observed for patents on proteins sequences.  Almost 160 patents directed at protein sequences 

were issued in 1998, although this number has since declined to about 120 patents per year.65  To 

put these numbers in perspective, genetic markers number in the millions,66 and scientists 

estimate that there are likely about one million human proteins.67  The number of potential 

                                                 
61  Proteins are made up of “peptides” and are themselves polypeptides.  Bernard R. Glick & Jack J. Pasternak, 
MOLECULAR BIOLOGY 23-26 (1998).  For our purposes, a polypeptide is simply a short peptide sequence.  Id.   
62  Nucleotides are the building blocks of DNA (i.e., genes) and RNA, which is a chemical cousin of DNA.  
The primary function of RNA is as a molecular messenger between genes and the cellular constituents that 
transcribe genes into proteins.  Id. at 19-22. 
63  PCR is the canonical process used for exponentially reproducing DNA sequences.  It allows initially small 
samples of DNA to be increased to much larger samples that can then be analyzed and manipulated.  Bruce Alberts, 
et al., MOLECULAR BIOLOGY OF THE CELL 316-17 (3rd ed., 1994). 
64  This estimate includes the subclass “measuring and testing processes involving nucleic acids,”  which is the 
most clearly relevant and largest subclass that appears to claim nucleotide sequences as part of a broader invention. 
65  These numbers are under inclusive because they are limited to the PTO subclasses directed specifically at 
polypeptide (i.e., protein) and nucleotide (i.e., DNA) sequences.  We know that a significant number of patents 
covering polypeptide and nucleotide sequences are categorized in other subclasses, most notably the subclasses for 
measuring and testing devices.  We nevertheless believe that these are the key subclasses for protein and nucleotide 
sequences that have broad biological importance, as they are sequences that are patented independently of a device, 
and thus represent the best measure of patent trends on these critically important biomolecules.  
66  A genetic marker is a genetic variant of a gene that is used to identify a chromosomal region, much as a 
postal code is used to identify an area in a city or locality.  Genetic markers are distinctive (unique) in much the 
same way a number is; further, millions of genetic markers have been identified, allowing scientists to develop a 
relatively high-resolution “map” of the human genome.  Eric S. Lander & Nicholas J. Schork, Genetic Dissection of 
Complex Traits, 265 SCIENCE 2037, 2037 (1994); Christopher S. Carlson, Additional SNPs and Linkage-
Disequilibrium Analyses are Necessary for Whole-Genome Association Studies in Humans, 33 Nat. Genetics 518, 
518 (2003) (estimating that there are more than 2.7 million genetic markers currently available). 
67  Christopher P. Austin, et al., NIH Molecular Libraries Initiative, 306 SCIENCE 1138, 1138 (2004) 
(observing that scientists estimate that there are 20,000 to 25,000 genes in the human genome and that they code for 
probably more than one million proteins). 
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polypeptide and protein sequences is certain to be far greater.  In this light, the number of gene 

and protein patents currently being issued appears to be much less threatening.68  

The dominance of the measuring and testing processes subfield is a constant throughout 

the fifteen-year period of our study.  By contrast, patents on protein and polypeptide sequences 

experienced almost a fifty-percent drop in their relative share while patents on genetically 

modified organisms, nucleotide sequences, and immunological processes and compounds almost 

tripled their share of biotechnology patents.  This relative drop in the number of protein and 

polypeptide patents could reflect a shift in research and development priorities.  During this 

period, dramatic technological advances were achieved in genome mapping and the Human 

Genome project, which directed substantial funds and scientific talent towards resolving the 

nucleotide sequence of the human genome, was launched and completed.69 

Overall, these data contradict fears that upstream patents on gene and protein sequences 

are privatizing the human genome and proteome.  The relatively low numbers of patents on 

genetic and protein sequences suggest that worries about excessive patenting of genes and 

proteins maybe overblown.  While interpreting the stabilization in the number of patents granted 

on genetic and protein sequences is difficult, given that limited PTO resources appear to be a 

major factor, there are other signs—particularly recent announcements of large databases of 

gene- and protein-sequence data being dedicated to the public domain—that speculative 

patenting in this area is not wildly proliferating.70  More studies and consistent monitoring 

                                                 
68  Adelman, supra note 3, at 1021-23 (arguing that biotechnology patenting is relatively uncongested and 
biotechnology science unbounded at this point in its development). 
69  Francis S. Collins, et al., The Human Genome Project: Lessons From Large-Scale Biology, 300 SCIENCE 
286, 286 (discussing the scale of human and economic resources that went into the human genome project). 
70  Recent decisions to dedicate genetic data to the public domain add further evidence against the potential for 
speculative patenting of genetic and protein sequences to inhibit biotechnology research and development.  See, e.g., 
Andrew Pollock, Celera to Quit Selling Genome Information, N.Y. Times, April 27, 2005, at C2. 
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undoubtedly will be needed before this less-ominous view is likely to be accepted, but the 

existing trends provide grounds for hope rather than cynicism.   

B. Diffuse Patent Ownership and Small Patent Portfolios 

One of the most striking features of our data is the large number of entities that own 

biotechnology patents.71  Figure 8, which displays the number of assignees over time, mirrors the 

trend—rapid rise during the mid-1990s followed by a stabilization or decline—observed in the 

number of biotechnology patents issued each year.  Almost identical trends are observed for each 

of the five biotechnology subfields, Figure 9a, and the data for assignee corporations and 

universities, Figure 9b.  These trends prove that biotechnology patents are spread broadly across 

an expanding number of patent owners.72  

The distribution of patents over a large number of assignees is also reflected in the low 

averages for the number of patents received annually per assignee.73  The average total number 

of patents obtained for all three types of assignees is about twelve, or fewer than one per year, 

and almost fifty percent of assignees obtained no more than twenty-five patents over the fifteen-

                                                 
71  Determination of the number of distinct assignees was complicated by the multiple variants of entities’ 
names in the PTO database caused by to typos in the filings, name changes over the years, etc.  For example, 
Smithkline Beecham appears both as SmithKline Beecham and Smithkline Beecham, which would be treated in our 
analysis as two different assignees.  These differences belied straightforward searches.  For the small studies, such 
as the top thirty assignees, we were able to obtain precise numbers by making sure that we covered every variant of 
a company’s name.  For the larger studies, such as the overall average and averages for specific classes of assignees 
or biotechnology subfields, we identified assignees by the first two words in their name.  This approach errs towards 
indicating a higher average than actually exists for these estimates, and therefore provides a conservative estimate, 
meaning higher average per assignee than actually exists.  
72  Our data do not take into account circumstances in which the assignee of a patent is a subsidiary off another 
company that also is the assignee of biotechnology patents.  Large biotechnology companies or large pharmaceutical 
companies active in the biotech area, in some cases may have multiple subsidiaries that appear independently in our 
database.  A review of the top thirty biotechnology companies (based on patents received) found that most 
biotechnology companies do not have subsidiaries.  However, the large pharmaceutical companies represented in 
our database do have subsidiaries or controlling interests in biotechnology companies (e.g., Novartis has a 
significant stake in Genentech).  In these cases, our data will undercount the number of patents controlled by the 
parent company.   
73  Because of the inconsistencies in the names provided in PTO data we received, this number excludes 2971 
patents (i.e., about half of percent of our data) from entities listed as “institutes” or “foundations.”  Including the 
patents with uncorrected names has a negligible effect on the overall average.  Accordingly, given the small number 
of patents at issue, we decided not to go through the laborious process of ensuring that the names were all correct. 
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year period.  Even among the top thirty patent owners (excluding the federal government and 

University of California), assignees obtained on average just 440 patents over the fifteen years of 

the study, or about twenty-nine per year, and they account for twenty-eight percent of the total 

patents issued.  These numbers are tiny in comparison to information technology and electronics 

industries, where the largest companies (e.g., IBM Corporation, Canon Kabushiki Kaisha, 

Samsung Electronics Corporation) regularly obtain more than one thousand patents each year.74 

We disaggregated the data to evaluate the trends for the university and corporate assignee 

classes and biotechnology subfields.  The highest annual average observed, about 4.5 patents in 

one year, for corporations occurred in 1998, and the current average is only about three patents 

per year.  The ten corporations with the largest biotechnology patent portfolios obtained an 

average of just twenty-seven patents per year and have total biotechnology patent portfolios that 

average 409 patents.75  Interestingly, the numbers for our large, successful biotechnology 

companies are significantly lower, with the average annual rate being about fourteen patents and 

portfolio sizes averaging 264 patents.  We observe a slightly higher concentration of patent 

ownership among top universities, with the ten largest universities averaging about thirty-one 

                                                 
74  See Parchomovsky, supra note 12, at 46-48; Press Release, USPTO, USPTO Releases Annual List of Top 
10 Organizations Receiving Most U.S. Patents (Jan. 11, 2005), http://www.uspto.gov/web/offices/com/speeches/05-
03.htm; Press Release, USPTO, USPTO Releases Annual List of Top 10 Organizations Receiving Most U.S. Patents 
(Jan. 12, 2004), http://www.uspto.gov/web/offices/com/speeches/04-01.htm; Press Release, USPTO, USPTO 
Releases Annual List of Top 10 Organizations Receiving Most U.S. Patents (Jan. 13, 2003), 
http://www.uspto.gov/web/offices/com/speeches/03-01.htm; Press Release, USPTO, USPTO Releases Annual List 
of 10 Organizations Receiving Most Patents (Jan. 10, 2002), http://www.uspto.gov/web/offices/com/speeches/02-
01.htm; Press Release, USPTO, USPTO Releases Annual List of Top 10 Organizations Receiving Most U.S. Patents 
(Jan. 10, 2001), http://www.uspto.gov/web/offices/com/speeches/01-02.htm; Press Release, USPTO, IBM Repeats 
at Top of PTO's Annual List of 10 Organizations Receiving Most Patents (Jan. 11, 2000), 
http://www.uspto.gov/web/offices/com/speeches/00-03.htm. 
75  We also evaluated the ten pharmaceutical companies (i.e., not solely biotechnology focused) with the 
largest patent portfolios.  The averages for them are almost identical to the biotechnology companies, with the 
average portfolio size being 384 patents and the average number of patents obtained in a year about twenty-six.  
Restricting the sample to ten of the largest strictly biotech companies, we find that they account for just 2.9-10 
percent (mean 6.6 percent) of the total number of patents in any given year.  Similarly, our class of mid-level 
companies accounted for between 0.2-6.7% or an average 2.6 percent.  These data do not preclude instances in 
which companies obtain a large number of patents in a single year.  Genentech holds the single-year record in our 
dataset with 120 patents issued to it in 1998. 
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patents per year, although if the two largest multi-campus systems, California and Texas, are 

removed, the average drops to twenty-three patents per year.76   

Only the top few assignees have patent portfolios for the fifteen-year period that are quite 

large.  The federal government and the University of California have, by far, the largest numbers 

with 1322 and 1287 patents, respectively; however, neither is a single entity in the common or 

practical sense of this term.  Consistent with these findings, the average fifteen-year patent 

portfolio size for corporations and universities are about nine and twenty-four patents, 

respectively.  Similarly, the fifteen-year averages for each biotechnology subfield varies from 

nine, for measuring and testing process patents, to about three, for genetically engineered 

organisms.   

The average patenting rates for the top assignees provide an important calibration point 

for understanding the implications of our findings.  More than a factor of thirty-five separates the 

aggregate average from that of the top thirty assignees.  But, as we have already noted, even the 

top assignees obtained modest numbers of patents per year and maintained patent portfolios 

typically in the range of several hundred patents.77  Further, no single entity owns more than a 

couple percent of the biotechnology patents issued over the past fifteen years.  The low aggregate 

and disaggregated averages we calculate expose the low ownership density of biotechnology 

                                                 
76  The top ten universities include University of California, University of Texas, Johns Hopkins University, 
Harvard University, Columbia University, Washington University, Stanford University, University of Pennsylvania, 
New York University, Rockefeller University, Thomas Jefferson Medical Center, Yale University, Baylor 
University, and Duke University.  They account for about seven percent (3.8 percent without the two large 
university systems) of the patents in our database, and the federal government accounts for almost three percent of 
the total patents issued.  
77  This point is critical to interpreting our data given the uncertainties involved in deriving the aggregate 
patent ownership averages.  While uncertainties are unavoidable for the broad averages, including those based on 
assignee type and biotechnology subclass, no such uncertainties exist for the top thirty assignees, for which we have 
been able to obtain precise data.  Accordingly, the highest values we calculate are not subject to any uncertainties 
and provide an unambiguous upper bound on patent ownership densities. 
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patents.  The modest sizes of current biotechnology patent portfolios suggest that no single entity 

has the patent capital necessary to dominate biotechnology research and development.  

  The small patent portfolio sizes also provide indirect evidence that patent anticommons 

are uncommon in the biotechnology sector.78  Where patent anticommons are pervasive, such as 

the semiconductor industry, they have caused portfolio sizes to balloon.79  One would anticipate 

a similar phenomena to be reflected in our data.  Other factors, of course, could be influencing 

portfolio sizes and large portfolios may not be an inevitable byproduct of patent anticommons.80  

Nevertheless, an inconsistency exists between the low portfolio sizes observed here and the 

patenting trends generally associated with patent anticommons that, at the very least, ought to be 

explained if the anticommons theory were to be accepted.  

C. Overlooking Scale and Distribution in the Anticommons Debate 
 

Studies of general patent trends illuminate the aggregate effects of rising biotechnology 

patent numbers.  The question at the heart of this debate—are patents deterring innovation?—

ultimately turns on the size and distribution of the scientific spaces enclosed by biotechnology 

patents.  This subsection focuses on these two elements.  Drawing on an earlier paper by 

Adelman,81 we argue that patents occupy a small region of the biomedical science commons and 

show that this general lack of congestion mitigates against patent anticommons emerging.82  

                                                 
78  Interestingly, the small patent portfolios found in the biotechnology industry appears to be an exception to 
the predictions made by Gideon Parchomovsky and Polk Wagner, who have argued that patent portfolios are going 
to be inexorably larger because power synergies that derive from developing a robust patent portfolio.  
Parchomovsky, supra note 12, at 9-10.  
79  Hall & Ziedonis, supra note 26, at 102, 110, 121 (observing that intensive patenting is the norm in the 
semiconductor industry and often encompass hundreds if not thousands of patents). 
80  However, to the extent that there are defining properties that distinguish distinct technological fields—
semiconductor technologies are incremental and highly interlocked through generic chip fabrication methods—these 
differences may be central to explaining the absence of patent anticommons.  For example, it could be that the 
research nodes (e.g., specific genetic factors or biochemical processes) for biotechnology are much smaller and 
more diffuse. 
81  Adelman, supra note 3. 
82  Heller, supra note 1, 698; Eisenberg, supra note 1, at 640. 
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The discussion then turns to the distribution of biotechnology patents.  It is here that our 

analysis focuses on the structure of the scientific commons.  We begin by examining the 

heterogeneous and multidimensional character of biomedical science using the PTO’s 

classification system.  This analysis shows that no single analytical framework can provide a 

definitive picture of biotechnology patenting or the distribution of patents within the biomedical 

science commons.  Common objections to the arbitrariness of the PTO classification system83 

therefore do not necessarily derive solely from limitations that are unique to the PTO’s approach 

classifying patents.84  

A point on methodology is worth making here.  Two primary approaches exist for 

analyzing patent data—one narrow and finely grained, the other broad and based on general 

patent characteristics.  Several excellent studies have been conducted using the narrow, fined-

grained approach; in the legal literature, most notably by John R. Allison and various co-

authors.85  Our study adopts the broad approach that is often found in the economics literature, 

which sacrifices detail for completeness.  We opted for this approach because completeness is 

central to our objective of assessing the potential value of patent counts as a metric for the 

prevalence of anticommons problems.    

                                                 
83  Allison & Lemley, Who’s Patenting What?, supra note 8, at 2114 (asserting that the PTO’s classification of 
patents often not reliable and, in any case, improperly groups technologies together with disparate characteristics); 
Griliches, supra note 43, at 1667 (describing the inconsistencies in the PTO’s classification system). 
84  In fact, after a detailed review of the 704 subclasses encompassed by our database, we concluded that the 
PTO’s classification system, while admittedly arbitrary in many respects, often had to grapple with classification 
judgments for which there were no easy or obviously correct solutions. 
85  See, e.g., Id.; Allison, Valuable Patents, supra note 5; Hall & Ziedonis, supra note 26.  
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1.  Biotechnology’s Uncongested Commons 

 Proponents of the anticommons theory presume, as they must, that the commons for 

biomedical science is strictly finite and congested.86  Yet, a characteristic of biomedical science 

that stands out is its unbounded scope.  Biotechnology methods have produced vast quantities of 

genetic data, but scientists have not been able to keep up with the explosion of new 

information.87  The opportunities for biotechnology consequently far exceed the capacities of the 

scientific community.88  Research scientists’ accounts affirm this view through their observations 

that, in the great majority of cases, patents can be avoided by undertaking parallel lines of 

research.89  It is this disparity between resources and opportunities that makes biomedical science 

an unbounded and uncongested resource.90   

The complexity of human biology is in large part responsible for the open-ended nature 

of biotechnology science.  Many biological systems have built-in redundancies that protect 
                                                 
86  See, e.g., Heller, supra note 1, at 698 (describing the tragedy of the anticommons as occurring when 
“multiple owners each have a right to exclude others from a scarce resource and no one has the effective privilege of 
use”). 
87  The scientific barriers are exemplified by the declining rate of new drug development over the past decade, 
despite increased spending (and patenting) by the public and private sectors.  See Food & Drug Administration, 
INNOVATION OR STAGNATION: CHALLENGE AND OPPORTUNITY ON THE CRITICAL PATH TO NEW MEDICAL PRODUCTS 
2 (March 2004) <http://www.fda.gov/oc/ initiatives/criticalpath/ whitepaper.pdf>.  Service, supra note 48, at, 1799 
(“The plain truth is that many of the most dramatic scientific advances that have recently been made in the lab have 
not transformed medicine.”); Richard S. Cooper & Bruce M. Psaty, Genomics and Medicine: Distraction, 
Incremental Progress, or the Dawn of a New Age?, 138 ANN. INTERNAL MED. 576,  577 (2003) (“To date, both 
[gene expression] studies and genome-wide scans have identified only weak and inconsistent genetic signals . . .” for 
common diseases such as cardiovascular disease and cancer). 
88  Jenifer Couzin, NIH Dives into Drug Discovery, 302 Science 218, 219 (2003) (describing how drug 
companies have “barely dipped their toes into the ‘data dump’ that is the human genome sequence”); Walsh, supra 
note 13, at 304-5 (“we have more targets than we have chemists to work on them”).  See also Allison Abbott, 
Geneticists Prepare for Deluge of Mutant Mice, 432 NATURE 541, 541 (2004) (describing how there will be a “glut 
of new mouse strains” for use as experimental models of human disease in the next five to ten years).  
89  Adelman, supra note 3, at 1003 (observing that few, if any, important medical problems are not wide open 
with regard to opportunities for research and development); Walsh, supra note 13, at 304-5, 324 (relating the 
response of a scientist respond observing that few, if any, common diseases will have only a single drug target and 
one commented that “we have more [drug] targets than [personnel needed] to work on them”); Walsh, View From 
the Bench, supra note 13, at 2002. 
90  In other contexts, particularly environmental regulation, property theorists have recognized that commons 
problems do not emerge until a commons becomes “congested,” that is the number of users rises beyond the point of 
sustainable exploitation of the resource.  See Rose, supra note 3, at 5-7.  The distinction I make here is a simple 
variation on this basic insight, with the proliferation of patents restricting access to intellectual resources taking the 
place of the mounting numbers of resource extractors in the typical tragedy of the commons scenario. 
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against failures of specific processes, and this redundancy is more prevalent the more important 

the process.91  Further, diversity is found in the huge range of genetic variants scientists are 

discovering and the multigenic nature of common diseases.92  This complexity belies an 

atomistic, gene-by-gene analysis of disease processes.93  Common diseases will, as a 

consequence, be associated with multiple pathways or molecules, implying that most important 

diseases will have numerous potential drug targets.94  Thus, by both affording numerous 

opportunities for research and a variety of treatment options, the complexity of biological 

processes reduces the potential for anticommons problems to emerge. 

 The unboundedness of biomedical science transforms the anti-commons debate.  Garret 

Hardin’s original storyline once again illustrates why relative capacity is critically important.  

Under the traditional commons scenario, individual self interest inexorably leads to 

overexploitation.  An obvious, though often ignored, assumption implicit in Hardin’s tale is that 

individual actions must be capable of collectively overexploiting a resource.  If overexploitation 

is impossible, the tragedy of the commons disappears.95  The anticommons theory is subject to 

the same logic—a large scientific commons with relatively small regions of patenting will afford 

numerous opportunities for scientists to circumvent potential blocking patents and, in effect, 

make patent anticommons less problematic and less likely to arise.96   

                                                 
91  For example, DNA repair process that are central to preventing the onset of diseases like cancer often 
integrate several parallel functions.  Adelman, supra note 3, at Part II.B. 
92  Id. 
93  Id. 
94  Walsh, supra note 13, at 324; Kenneth M. Weiss & Joseph D. Terwilliger, How Many Diseases Does It 
Take to Map a Gene With SNPs?, 26 NATURE GENETICS 151, 153 (2000) (discussing how common disease traits 
will be associated with many potential candidate genes that scientists will have to investigate).  Even relatively 
simple diseases like malaria reveal complex underlying genetic susceptibilities that offer several potential targets.  
Adelman, supra note 3, at 1010.  
95  Id. at 1021; Rose, supra note 3, at 5-7. 
96  Adelman, supra note 3, at 1021-22.  In fact, one might reasonably conclude that the dispersal of research 
activity that follows from extensive patenting could be a positive outcome.  Id.; see also  
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This argument requires an important qualification.  Biomedical science has numerous 

sources of heterogeneity, including external market factors, fundamental biological 

characteristics, and the vagaries of research priorities.  At any given time, isolated areas of dense 

patenting are therefore bound to exist.  Our argument does not, and cannot, rule out localized 

areas of congestion, such as those that could emerge around powerful technologies (e.g., genetic 

replication methods) or areas with large market potential (e.g., stem cells, diabetes, monoclonal 

antibodies).97  It demonstrates only that the ambient conditions of biotechnology patenting 

mitigate against patent anticommons being a pervasive problem.  Detecting isolated regions of 

dense patenting requires either narrow studies or a mapping of the distribution of biotechnology 

patents in the scientific commons, which is the subject of the subsection that follows. 

2.  The Multiple Dimensions of Biomedical Science 

The current focus of the academic debate on patent counts ignores the challenges of 

identifying reliable metrics for areas of intense patenting.98  Unlike patent ownership patterns, 

for which an obvious base unit exists (the assignee), the very novelty and ill-defined boundaries 

of most scientific disciplines defy simple conventions.  As a consequence, defining the scope of 

specific fields of invention will generally be far from trivial—one need only consider the 

Byzantine PTO classification system to appreciate the difficulty of this task.99  Typically these 

obstacles are dealt with by omitting the denominator—the commons itself—from the discussion 

altogether, which amounts to treating ignorance as a virtue.     

The root question is not simply one of classification, but one also of gauging the potential 

(i.e., currently unrealized) scope of the specific discipline or area of technological development.  

                                                 
97  Id. at 1023. 
98  This is not to deny that simple cases will exist, such as the thousands of patents governing virtually every 
aspect of current semiconductor technologies.  Hall & Ziedonis, supra note 26, at 104. 
99  As mentioned above, the PTO classification system has 400 classes and more than 120,000 subclasses, and 
no obvious rules for systematically adding new classes or subclasses.  Hall, supra note 8, at 13. 
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The complexity and rapidly developing nature of biotechnology heighten this uncertainty and 

complicate the interpretation of our data.  For example, at first blush, it would seem that patents 

are heavily concentrated in certain subfields and subclasses.  About three-quarters of the 

biotechnology patents issued over the past fifteen years fall into our methods (forty-eight 

percent) and protein sequence (twenty-seven percent) subfields.  Similarly, approximately fifty 

percent of the patents in our study fall into just thirty of the more than 700 PTO subclasses 

represented in our biotechnology patent database.100   

Yet, in absolute terms, only thirty percent of the PTO subclasses covered by our study 

have more than one hundred patents, and only about one percent have more than 1000 patents.101  

Further, if one considers the top thirty PTO subclasses, on average two-thirds of them increased 

by fewer than fifty patents per year.  In fact, for the vast majority of PTO subclasses, fewer than 

100 patents issued within them over the fifteen-year period of our study.102  Like so many 

features of inventive activity, the distribution of patents across the PTO subclasses is highly 

skewed—most subclasses have small populations, while a few super subclasses are vast.   

Of the 704 PTO subclasses covered by our study, 113 contain more than one hundred 

patents.  The challenges involved in interpreting these data are illuminated by Table 4, which 

provides a list of the thirty PTO subclasses with the largest numbers of patents granted between 

1990 and 2004.  While the PTO classification system lacks the bizarre qualities of the infamous 

                                                 
100  The top thirty subclasses started at thirty-seven percent of the total in 1990 and gradually rose to about fifty 
percent of the total by 1996, where they have remained relatively constant. 
101  The distribution of patents in PTO subclasses is as follows: two subclasses with more than 2000 patents, six 
subclasses had 1000-1999 patents, eight have more than 500-999, twenty-seven had 250-499 patents, eighty-five 
have 100-249 patents, seventy-five have 50-99 patents, ninety-six have 25-49 patents, 165 have 10-24 patents, 103 
have 5-9 patents, and 136 have 1-4 patents. 
102  It is important to recognize, however, that the PTO classifications are confounded by the fact that most, if 
not all, biotechnology inventions can be categorized in more than one PTO subclass, as demonstrated by the PTO’s 
conventional use of a primary and, often numerous, secondary subclasses for each invention.  Indeed, the specific 
subclass into which an invention is placed can be little more than happenstance or, perhaps worse, may be driven by 
the patentee’s strategic decisions regarding the art unit or examiner she would like to review her patent. 
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Chinese Encyclopedia “The Celestial Emporium of Benevolent Knowledge,” in which animals 

are divided into classes that include “those that belong to the Emperor,” “embalmed ones,” 

“fabulous ones,” “those that from a long way off look like flies,” and “stray dogs,” to name just a 

few,103 it does not lack for seemingly arbitrary and obviously overlapping categories.   

Table 4:  The Top Thirty PTO Subclasses for Biotechnology Patents 
 
Subclass Description of Subclass 
435/6 Measuring and Testing (M&T) Processes involving nucleic acids  
435/69.1 Recombinant DNA techniques included in methods of making a protein or polypeptide 

514/12 
Designated Organic Active Ingredient (“DOAI”) containing 25 or more peptide repeating 
units in a known peptide chain structure  

530/350 Protein Sequences having more than 100 amino acid residues 
435/71 Microorganisms that make polypeptides or proteins 
435/5 M&T Process Involving a virus or bacteriophage 
514/2 DOAI -- Peptide containing (e.g., protein, peptones, fibrinogen, etc.) 
514 44 DOAI -- Polynucleotide (e.g., RNA, DNA, etc.) 
435/320.1 Genetic-engineering vectors, per se 
536/23.1 DNA or RNA fragments or modified forms thereof (e.g., genes, etc.)  
435/172.3 Defunct category104 
435/325 Animal cell, per se 
536/23.5 DNA or RNA fragments or modified forms thereof that Encode animal polypeptides  
435 4 M&T processes involving enzymes or microorganisms 
435/252.3 Microorganism tranformants (e.g., containing rDNA, vector, foreign or exogenous gene) 

436/518 
Analytical or immunological testing involving an insoluble carrier for immobilizing 
immunochemicals 

435/7.21 
M&T process involving microorganisms with a cell-membrane bound antigen, receptor, 
antibody, or lysate and animal cell 

530/324 Polypeptides having more than 25 amino acid residues 
435/194 Enzyme transferases that transfer phosphorus containing groups (e.g., kinases) 
514/18 3 or 4 peptide repeating units in known peptide chain 
435/240.2 Defunct category104 
435/91.2 Polynucleotide acellular exponential or geometric amplification (e.g., PCR) 
514/19 2 peptide repeating units in known peptide chain 
435/29 M&T processes involving microorganisms 
514/8 DOAI – Glycoproteins 
435/7.23 M&T processes involving animal tumor cell or cancer cell 
435/193 Enzyme -- transferases other than ribonucleases 
424 851 DOAI – Lymphokines 
435/69.7 rDNA techniques included in making fusion proteins or polypeptides 
514/11 DOAI -- Monocyclic Peptides (e.g., protein, peptones, fibrinogen, etc.) 
 
                                                 
103  Michel Foucault, THE ORDER OF THINGS: AN ARCHEOLOGY OF THE HUMAN SCIENCES XV (1971). 
104  The PTO periodically abandons subclasses as it revises its classification system.  These two categories, 
435/172.3 & 240.2, were abandoned during the 1990s and the patents in them were reassigned to new categories.  
The process of resolving these reassignments can be very time consuming in some cases.  Accordingly, for a 
relatively small number of patents, including those in these two categories, we did not attempt to identify the new 
categories into which they were relocated. 
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Even this short list of subclasses illustrates the erratic scope of the PTO classification 

scheme.  Almost half of the subclasses describe specific classes of biomolecules, particularly 

proteins, polypeptides, nucleotides (i.e., DNA and RNA sequences) of certain lengths or having 

certain characteristics.  The scope of many of these molecular classes is enormous and, equally 

importantly, they are not unique to any particular areas of biotechnology.  For example, should 

issuance of 1462 patents on “protein sequences having more than 100 amino acid residues” over 

the past fifteen years be troubling when scientists estimate that there are approximately one 

million human proteins and most of the proteins in this subclass will be biologically unrelated?105  

One could reasonably make the case that we should be more worried about 300-plus patents 

issued on glycoproteins, which encompass a much narrower, although still broad and important, 

class of compounds.   

The two largest PTO subclasses in our study cover biotechnology methods and their 

essential materials, such as biomolecules used in genetic engineering, techniques for 

manipulating DNA, and isolated animal cells and microorganisms.  These subclasses are, if 

anything, more amorphous and potentially broader than those for classes of biomolecules (e.g., 

polypeptide sequences of a specific length).  The subclass “Measuring and testing processes 

involving nucleic acids,” which dwarfs all other subclasses, is vast and can include anything 

from commercial tests (e.g., genetic tests for infants, DNA tests used in law enforcement), to 

genetic tests for microorganisms, to cutting-edge micro-array technologies used in monitoring 

gene expression levels in living organisms.  This single subclass encompasses a vast area of 

technological development that is applicable to a huge range of biological problems.   

It is possible that insights into localized conditions may be gained through case studies of 

well-defined areas of technological development.  We attempted two preliminary studies along 
                                                 
105  Austin, supra note 67, at 1138. 
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these lines, focusing on patents related to diabetes and HIV Aids research, each of which is at a 

different stage of research and development.  The data are somewhat informative insofar as we 

found that patenting in these areas encompassed a relatively broad range of technologies, as 

measured by the number of PTO subclasses in which the patents issued.  We observe a close 

correlation between number of patents issued annually and the number of PTO subclasses they 

cover, which is evidence that their distribution is diffuse.  While these results are enticing, they 

demonstrate the limits of relying on technology categories and generic patent data.  Even 

knowing the field of invention, it is difficult to assess the significance of patent numbers in each 

of the PTO subclasses without more detailed information on the specific patents at issue.   

The preceding examples illustrate the variable scope of PTO subclasses and the poor 

basis patent counts provide for making inferences about patent densities.106  An obvious question 

raised by these problems is whether it is possible to do better than the PTO.  If one simply wishes 

to improve the logic and rigor of the PTO’s classification system, the answer is probably yes.  

For example, an approach that more systematically draws on established functional taxonomies 

could be implemented.107  However, if the objective is to establish a system of categories with 

carefully calibrated scope, the answer is almost certainly no.  The novelty of inventions and 

evolving, multidimensional nature of science preclude such a grid-like approach, and multiple 

                                                 
106  It also appears that the PTO classification system, which in effect maps the scientific landscape of 
biotechnology, does not align well with the structure of biotechnology research and development.  This mismatch is 
plainly evident in the PTO’s classification of certain biomolecules (e.g., proteins, polypeptides) by length, as 
opposed to the area of research (e.g., neurological diseases, specific types of cancer, diabetes) to which they are 
relevant.  Accordingly, patents from multiple PTO subclasses often will map onto a specific area research and 
development, suggesting that patent densities of specific PTO subclasses really tell you very little about what you 
care about, namely, the density of patenting in a specific area of research and development.   
107  Even a superficial review of the PTO classes and subclasses reveals that the PTO draws on established 
scientific nomenclature, but it does so inconsistently because new classes and subclasses are created in a largely 
reactive fashion.  Hall, supra note 8, at 13.  Just to give one example, eliminating categories based on the size of 
biomolecules, such as proteins and DNA, would aid efforts to undertake distributional studies.   
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frameworks (e.g., biotechnology patents could be classified by biochemical pathway, organ, or 

disease) will always exist for classifying inventions.  

 Judging whether the volume of patenting is good, bad, or indifferent requires concrete 

estimates of the distribution and scope of the patents at issue.  Our analysis demonstrates the 

difficulties of interpreting patent-count data given the impossibility of constructing a synoptic 

quantitative framework for analyzing them.  Unsurprisingly, biomedical science bears little 

resemblance to Hardin’s vision of the public commons, with its relatively simple spatial metrics 

and model of competition.  With this added complexity, assessing specific regions in the 

scientific commons for potential congestion will require detailed analysis of related groups of 

patents that is clearly beyond the capacities of high-level patent studies and will be far from 

trivial for even localized areas of research and develop.  In the absence of quantitative measures 

for patent density or distribution, the analysis will largely turn on how patents are categorized, 

which, as we have seen, will be subject to significant uncertainties and debate. 

D. Towards Reliable Metrics for the Scientific Commons 

Using patent counts as a metric for gauging patent policy offers important insights when 

used in conjunction with other information.  Our broad surveys of biotechnology patenting 

provide a surprisingly coherent picture.  The lack of concentrated ownership, continuous growth 

in patent applications, rising research and development expenditures, and consistent infusion of 

new patent owners all suggest that biotechnology patenting is not adversely affecting innovation.  

These findings are consistent with the existing social science survey data, which find little clear 

evidence that patents are interfering with scientists’ research work.108  They are also consistent 

with our characterization of biotechnology as a still-emerging field in which research 

                                                 
108  Id. at 289 (finding that there is “little evidence of routine breakdowns in negotiations over rights, although 
research tool patents are observed to impose a range of social costs and there is some restriction of access.”).   
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opportunities far outstrip current scientific resources.  Taken together, these observations suggest 

that anticommons problems ought to be the exception rather than the rule for biotechnology 

research and development. 

Reliance on patent counts runs into trouble when it becomes the sole metric.  To date, the 

debate over the growth in biotechnology patenting has been conducted as though large numbers 

alone signal the imminent emergence of patent anticommons.109  In order for the current debate 

to progress, those concerned that innovation is threatened by expansive patenting will have to 

move beyond this one-dimensional model.  To do so, however, will require commentators to 

jettison the rhetorically potent metaphors that have framed the debate over biotechnology 

patenting over the last decade.   

It will also, we hope, force academics and policymakers to develop new, more accurate 

strategies for assessing the impacts of patents on innovation.  This could entail, for example, 

conducting detailed studies using random samples of patents taken from carefully specified 

research domains.  Identifying areas for such focused studies could be based on a combination of 

factors, including scientific importance, economic potential, and prevalence of patenting in 

related PTO subclasses.  The broad metrics utilized in this study, such as trends in the numbers 

and types of entities obtaining patents, also provide important information about the dynamics of 

patenting.  Analogizing to analytical strategies used in the ecological sciences,110 which must 

contend with similar types of complexity, these dynamical measures may prove to be more 

reliable metrics than simple patent counts.  The concluding section of the paper returns to these 

questions and provides some initial suggestions for future empirical work.  

                                                 
109  See, e.g., Heller, supra note 1, at 699 (using patent counts to suggest that a patent anticommons exists 
based solely on a general search of patents with “adrenergic receptor” in their claim language).  
110  See, e.g., Simon A. Levin, The Problem of Pattern and Scale in Ecology, 73 ECOLOGY 1943, 1945 (1992) 
(discussing the value of aggregate metrics that provide measures of the dynamics of ecosystem processes). 
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III. The Statistical Insignificance of Patent Metrics as Predictive Tools 

Only the most churlish cynic could fail to be excited by the wave of empirical studies 

animating patent scholarship today.  Recent studies have transformed our understanding of 

patent trends in the U.S. and abroad.111  Exciting new work combining patent citation data and 

network theory is being conducted to analyze the relative importance of patents and their 

relationship to each other.112  More provocatively, a 2004 study by John R. Allison, et al., 

Valuable Patents, purports to have demonstrated that it is possible to identify valuable patents 

reliably using certain patent characteristics, such as citations received by a patent.113  

On the other hand, new empirical work should not be embraced uncritically.  The rising 

interest in patent metrics among legal scholars follows decades of work by economists,114 who 

have long viewed patents as a unique, though difficult-to-interpret, source of information on 

national innovative output.115  Their experience suggests that patent metrics, and particularly 

patent characteristics, must be analyzed with great care.  Economists’ efforts have often been 

frustrated by the highly skewed (i.e., non-bell shaped) distribution of patent characteristics.116  

The vast majority of patents, for example, have very low economic value, whereas a small 

number of patents (the skewed tail of the distribution) account for a disproportionate share of the 

                                                 
111  See supra n. 8.  We have learned that patent litigation grew by almost ten-fold between 1978 and 1999 and 
gained new understanding about the important class of patents being litigated.  Jean Lanjouw & Mark Shankerman, 
Enforcement of Patent Rights in the United States in Patents in the Knowledge-Based Economy 146 (Wesley M. 
Cohen & Stephen A. Merrill, eds., 2003) (also noting that the per-patent rate of law suits has not increased because 
the number of patents filed rose at a proportionate rate). 
112  See Gábor Csárdi, et al., Modeling Innovation by A Kinetic Description of the Patent Citation System 
(submitted for publication) (describing the application of network theory to the study of patent citations). 
113  Allison, Valuable Patents, supra note 5, at 438, 451, 462. 
114  Griliches, supra note 43, at 1661-62, 1669-70; Hall, supra note 8, at 1-3; Jean O. Lanjouw, et al., How to 
Count Patents and Value Intellectual Property: The Uses of Patent Renewal and Application Data, 46 J. INDUS. 
ECON. 405, 413 (1998). 
115  Lanjouw, supra note 114, at 413 (“one of the longest lasting debates in the history of economic 
measurement has been whether the noise and the biases in patent count measures can be made small enough to make 
patent counts useful measures of innovative output”); Griliches, supra note 43, at 1670; Brownyn H. Hall, et al., 
Market Value and Patent Citations, 36 RAND 16, 16 (2005). 
116  A distribution is characterized as skewed because it is asymmetric about the most probable value of the 
metric, that is the tail of the distribution is substantially longer on one side relative to the other. 



 34

wealth generated by innovation.117  This distributional feature of patent data, as we will show, 

creates significant analytical challenges.118  

It is also important to recognize the potential pitfalls of patent studies.  Unlike atoms, 

which have perfectly fungible characteristics, patents resemble living organisms, with their 

highly variable characteristics that can evolve over time.  The value of patented inventions, for 

example, changes as technological fields develop—advances can lead to improved methods that 

replace it or synergistic technologies may arise that make it more valuable.  While statistical 

analyses can capture broad trends and important relationships, these numbers represent 

composite pictures made up of thousands of distinct inventions.  The broad, highly skewed 

distributions found for most patent characteristics evidence this underlying diversity and 

undermine efforts to use statistical methods to construct predictive models for classifying 

individual patents (e.g., based on economic value, assignee type, or industry).  

The discussion that follows begins by presenting our data and examining its limiting 

features.  This analysis focuses on the statistical trends in three distinct patent characteristics: 

number of claims, the length of PTO patent prosecutions, and the number of citations made in 

and received by a patent.119  This work is unique in that it focuses on the statistical limits of 

evaluating individual patents, as opposed to samples or populations of them.  Drawing on these 

results, we reevaluate the findings of several recent empirical studies, most notably the studies 

                                                 
117  Griliches, supra note 114, at 1679-80 1686; Mark Schankerman, How Valuable is Patent Protection? 
Estimates by Technology Field, 29 RAND J. ECON. 77, 79 (1998) (“The distribution of the private value of patent 
rights is sharply skewed in all technology fields”).  
118  Griliches, supra note 114, at 1661-62, 1666. 
119  The analysis of citation trends utilizes data generated by Bronwyn H. Hall, Adam Jaffe, and Manuel 
Trajtenberg (herein after “the Hall Study”).  Hall, supra note 8.  The recent wave of empirical work on U.S. patents 
owes a great deal to their pioneering work, which created the NBER Patent Citations Data File.  Id.  The Hall Study  
collected every patent issued between January 1963 and December 1999 into a single database and established a 
new standard for empirical work in the field, particularly with regard to the massive quantity of information that the 
authors compiled on patent citations.  Id.  Several subsequent studies have utilized the NBER database, including 
Allison, Valuable Patents, supra note  5, and Moore, supra note 8.   
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reported in Valuable Patents and a recent paper by John R. Allison and Mark A. Lemley.  

Contrary to the conclusions of these studies, we find no support for the view that broad statistical 

regularities in patent metrics have practical utility for predicting patent value.   

A. Skewed Distributions and Uncharacteristic Patents 
  

Our data suggest that few generalizations can be made about the characteristics of 

biotechnology patents.  With the exception of the recent increases in prosecution times, the data 

display weak trends, virtually all of which are tiny relative to the broad distribution of the data.120  

Further, median values for the three patent characteristics differ only slightly between our 

biotechnology subfields and assignee types.  In short, we find little evidence that the 

characteristics of biotechnology patents vary meaningfully over time or between assignee types 

and biotechnology subfields.  

1. Mismeasures of Biotechnology Patents: Prosecution Times, Number of 
Claims, and Citation Counts 

 
The data on patent prosecution times offer some limited insights.121  We find that the 

median patent prosecution time diminished between 1990 and 1994 from 2.7 to 2.1 years and 

then began to climb (most dramatically since 2002), such that by 2004 the median prosecution 

                                                 
120  Interpreting the data is complicated by their broad, often-skewed distributions.  In most data analysis, the 
standard measures used are means and standard deviations, the latter being the average squared difference of the 
data from the mean.  However, means and standard deviations are not informative when the distribution of the data 
is not “bell-shaped,” typically referred to as “normal distribution,” and the variance of the data is not constant for all 
values of the data (i.e., the variance must be independent of the magnitude of the statistic).  Michael O. Finkelstein 
& Bruce Levin, STATISTICS FOR LAWYERS: STATISTICS FOR SOCIAL SCIENCE AND PUBLIC POLICY 4-5, 22 (2001).  
121  The distributions of these data are relatively well-behaved for purposes of the statistical analysis, meaning 
they adequately, though imperfectly, meet the criteria for using standard statistical averages and standard deviations.  
However, because the distribution are still somewhat skew, and we want to present the data in a consistent format, 
we have chosen to present the data using “box plots.”  A box plot provides direct measures of the center of each 
distribution, the spread of the center of the distribution, and the extremes of each distribution, and it uses statistics 
that are insensitive to the skew of the data—medians and quartile plots. Finkelstein, supra note 120, at 4-5.  Box 
plots also include averages, but here the difference between the mean and median values is the important measure 
because it provides a measure of the skew of the distribution.  John A. Rice, MATHEMATICAL STATISTICS AND DATA 
ANALYSIS 372-73 (1995).  
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time for a biotechnology patent was 3.2 years, see Figure 10a.122  This rise, which constitutes a 

forty-three-percent increase in median prosecution time from the low in 1994, is consistent with 

recent warnings from the PTO that prosecution times and backlogs for patents involving 

complex technologies have increased substantially.123  Its significance is also borne out by 

statistical simulations we conducted to obtain a measure of the year-to-year random variation of 

the mean prosecution time.124   

Aggregate statistics alone do not provide a complete account of the data.  If one is 

concerned about the implications of the data for individual patents—such as for purposes of 

discriminating between patents based on prosecution time—one must take into account the 

exceptionally broad range of prosecution times.125  The median values and the quartiles 

presented in Figure 10a are the relevant factors for this analysis.  By these measures, the recent 

rise in patent prosecution time clearly falls within the box plots for each year, which demarcate 

the range containing fifty percent of the data.  This overlap implies that the observed median 

values for each year all have at least a fifty-fifty chance of being observed in one year as another.  

Simply stated, the range of likely prosecution times for a patent are indistinguishable from year-
                                                 
122  See Figure 14.  The corresponding mean values are 2.8 for 1990, 2.4 for 1994, and 3.7 for 2004, which 
show less of a drop and more of rise, suggesting the influence of the skew of the data. 
123  Dudas, supra note 2, at 2.  It is nevertheless worth noting that while the number of biotechnology patents 
grew by 750 percent, the median prosecution time increased by less than forty-three percent.  Although dramatic—
about a year—in absolute terms, this rise is nevertheless a testament to the PTO’s efforts to keep abreast of the rapid 
advances that occurred during this period. 
124  We used the means in this case to estimate the year-to-year variation of the data.  Despite the skew of our 
population data, the robustness of the data set allows an assumption of normality for the annual patent population 
averages.  This assumption was confirmed using a technique called bootstrapping, which involves assessing the 
distribution of repeated samples of sample size n (in our case n = 300) collected from within the populations tested 
for normality.  Bootstrapping confirmed that our 30 samples of just 300 patents were normally distributed, therefore 
allowing us to assume a normal distribution for the means of our yearly populations, for which the minimum sample 
size is about 700 patents.  We calculated the expected variability, formally referred to as "standard error," to range 
from 15.5 days in 1990 to 7.0 days in 2004 for samples taken from each of the years covered by our data.  The very 
small standard errors indicate that the aggregate trend, as expressed in the mean value, is clearly beyond expected 
random fluctuations of the annual averages. 
125  This is a critical distinction from a statistical standpoint.  If the question you are seeking to answer is, what 
is the prosecution time likely to be if I submitted a new application for a patent, you must use the median and the 
quartile plots to give you a sense of the likely bounds within which your patent is likely to fall.  Note, however, that 
if the data were not skew, you would use the mean and the standard deviation.  Finkelstein, supra note 120, at 4-5.   
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to-year over the fifteen years of our study.  The broad dispersion of the data, in effect, create a 

statistical haze that makes it impossible to discern any trend at all.  

The small differences in median patent prosecution times between the three assignee 

types and the five biotechnology subfields lead to similar findings, see Figures 10b & c.  For the 

three assignee groups, the differences in median prosecution time is largest between corporations 

and government, with the former having a mean prosecution time of 3.0 years and the latter 3.5 

years.  By contrast, the upper and lower bounds of the fifty-percent interquartiles in the box plots 

span 1.5 years and 1.7 years for corporations and government, respectively.  Similarly, the 

largest difference in the median patent prosecution times between biotechnology subfields is 

only 0.7 years (2.7 years for polypeptide and protein patents versus 3.4 years for immunological 

and genetically modified organism patents), whereas the smallest fifty-percent interquartile span 

is 1.5 years.  In both cases, the differences fall well within the broad distribution of the data.  

These results confirm our intuitions about the dynamics of the patent prosecution process.  

At base, there is little reason to believe that patent prosecution time is sensitive to technical 

differences between biotechnology subfields.  First, while patent review may stretch over more 

than two years, the actual time spent on patent applications by examiners averages out to be just 

eighteen hours.126  In other words, because much of the delay derives from external factors, one 

would expect the total time for prosecuting a patent to correlate weakly with the actual time a 

PTO examiner and a patentee’s representative(s) spend on the prosecution process.  As recent 

appeals for greater resources suggest,127 PTO backlogs caused by limited resources, more 

complex patents, and rising number of applications have a much more direct effect on time for 

patent review than differences between technologies.  

                                                 
126  Lemley, supra note 17, at 1500. 
127  Dudas, supra note 2, at 2. 
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Second, while backlogs may vary between technology fields because of differences in the 

numbers of patents filed and the complexity of the technology, the influence of these factors will 

be obscured by the diverse characteristics of inventions within a given field.128  It is obvious, for 

example, that some biotechnology inventions are complex, while others are elegantly simple.  

Similarly, many patents involve follow-on inventions that represent minor variations on a basic 

theme within an established area of research and development, whereas others are truly novel 

and groundbreaking.  The range of inventions, whether characterized by novelty, complexity, or 

predictability, is reflected in the broad variability of the patent prosecution times for each of our 

biotechnology subfields, see Figures 10c.  The underlying diversity of inventions within a field 

thus blurs the slight association that might exist between patent prosecution time and substantive 

differences between fields of research and development. 

The analysis of our data for number of claims and patent citations mirrors that for 

prosecution time data.129  The overall trends are straightforward enough.  The median number of 

claims per patent decreases slightly until 1994, increases through 2000, and then a levels off 

through 2004, Figure 11a.  Similar to the prosecution-time data, the aggregate values suggest a 

slight trend towards increasing numbers of claims, ranging from a low in the median of nine 

claims to a high of fourteen claims.  The modest nature of this trend is highlighted by the fact 

that the number of claims in a patent can exceed 400.  As above, when considered on a patent-

by-patent basis, these changes once again fall well within the fifty-percent interquartile of the 

                                                 
128  Polk Wagner, Of Patents and Path Dependency: A Comment on Burk and Lemley, 15 Berkeley Tech. L.J. 
1341, 1342-43 (making a similar point in an argument about the importance of “micro-specificity” when interpreting 
modern patent jurisprudence). 
129  The distributions for these data deviate dramatically from normality.  They are highly asymmetrical 
because they are bounded on the low end by zero or one and they have a substantial tail at the high end that extends 
out to very large numbers of either claims or citations.  As already note, this skew creates precludes us from using 
means or standard deviations.  Finkelstein, supra note 120, at 4-5, 22.   
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box plots and thus are meaningless for predictive purposes.130  Nor do we observe any 

meaningful differences in median claim numbers between biotechnology subfields or assignee 

types, see Figures 11b & c. 

These results also bear out our intuitions.  No grounds exist to anticipate that the number 

of claims in a patent correlates in a systematic way with its issue date or area of invention.  

Valuable inventions, which may justify more expansive (and therefore expensive) claims, arise 

in all areas of biotechnology research and development.  Further, claiming strategies are as 

variable as the inventions they are designed to protect, which range from multifaceted to 

streamlined, from complex to simple, and from paradigm-shifting to cumulative.  These 

differences transcend variations over time and between subfields; cumulative to transformative 

work occurs across time and between specific areas of research and development.  Our data 

provide quantitative support for this view.  The variation in the number of claims is almost as 

broad within discrete patent subpopulations as it is for biotechnology as a whole, suggesting that 

differences within subfields or years are likely to overwhelm differences between them.131  

These observations expose another closely related point.  Commentators have become 

increasingly prone to categorizing certain fields of invention as being dominated by specific 

types of inventive activity.  Biotechnology has been characterized, for example, as being 

                                                 
130  The actual medians for each of the assignee categories are twelve for corporations, thirteen for universities, 
and eleven for the federal government, whereas the fifty-percent interquartile for each is seven to twenty-one claims, 
six to twenty-one claims, and six to eighteen claims, respectively.  In the tech subfields, the medians range from ten, 
for protein sequences, to fourteen, for measuring and testing processes, while the narrowest interquartile ranges are 
seven to twenty claims, for genetically modified organisms, and five to eighteen claims protein sequences. 
131  The five largest PTO subclasses, for example, have medians and fifty-percent interquartiles as follows: (1) 
the median is 16 and the interquartile range 9-27 for subclass 435/6; (2) the median is 12 and the interquartile range 
7-19 for subclass 435/7.1; (3) the median is 14 and the interquartile range 7-22 for subclass 435/5; (4) the median is 
11 and the interquartile range 6-18 for subclass 514/12; and (5) the median is 6 and the interquartile range 3-12 for 
subclass 530/350. 
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“research oriented” and distinguished by its discrete technological leaps.132  We find that almost 

fifty percent of biotechnology patents cover new measuring and testing processes,133 many of 

which are more analogous to devices than to drugs, which typically provide the model for 

biotechnology research and development.134  While these sorts of generalizations can be useful, 

they risk distorting legal policies by propagating a one-dimensional image of biotechnology that 

marginalizes important innovative work.135  Our data show that the potential for 

misunderstanding is particularly high for biotechnology. 

The citation data are the least illuminating of the study.136  We find that the number of 

citations made in biotechnology patents exhibit no trends whatsoever.  Almost across the board, 

whether by year, assignee type, or biotechnology subfield, the median number of citations is two; 

indeed, only a few instances exist in which it deviates to one or three citations.  Yet, the range in 

the number of citations made is quite broad and apparently becoming broader.  The data on 

citations received are much more limited because of the poor temporal overlap between our data 

and the citation data we integrated from the Hall Study.137  The median number of citations 

                                                 
132  Dan L. Burk & Mark A. Lemley, Policy Levers in Patent Law, 89 VA. L. REV. 1575, 1667-79 (2003); Dan 
L. Burk & Mark A. Lemley, Biotechnology’s Uncertainty Principle, 54 CASE W. RES. L. REV. 691, 732-34 (2004). 
133  See infra Part II.A.  
134  Instrument development is distinct from drug development. Discovering novel drug therapies, which by 
their nature are rare, involves extensive trial-and-error research and development and entails often stratospheric 
costs. Burk, Policy Levers, supra note 132, at 1581-82 (noting that drug development can take more than a decade 
and cost hundreds of millions of dollars).  By contrast, measuring and testing processes often involve more 
standardized science, incremental advances, and substantially lower costs.  
135  In fact, even drug development, which is often portrayed as the archetype for this type of research and 
development, is a mixture of discontinuous advanced followed by cumulative follow-on research and development.  
See, e.g., Geoffrey Duyk, Attrition and Translation, 302 Science 603, 604 (2003) (describing how economic 
pressures are driving drug companies towards “fast follow-on” strategies or “me too” drugs that involve minimal 
additional research because the new drugs are slight variants of existing products); Stephen S. Hall, The Drug Lords, 
N.Y. Times, Nov. 14, 2004, §7 (Book Rev.), at 8.  
136  Note that given the absence of trends, we have chosen not to include any figures in the Article for the 
citation data; direct description of our results seems more the adequate under the circumstances.  
137  The citation data from the Hall Study end in 1999, and this poor overlap is compounded by the time-lag in 
citations received by patents—typically it takes several years before citations to a patent begin to accumulate. 
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received was highest (four citations) for patents that issued in 1990 and 1991, after which it 

diminishes monotonically.138    

 Citation data are arguably most interesting for what they could reveal about successful 

assignees and possible differences between the public and private sectors.  Intuitively one would 

expect the number of citations a patent receives to correlate with the value or, perhaps less 

significantly, the scope of the invention, and the most successful assignees to own more patents 

that receive a greater number of citations.139  The data display no difference between the median 

value for our “big ten” (i.e., the largest and most successful) biotechnology companies and that 

for all other entities.  This result must be treated skeptically, as it could be an artifact of the short 

time period covered or of the citations in biotechnology patents tending to be to non-patent 

sources.140  Alternatively, it may be that successful companies also fail often or perhaps that the 

existing measures of patent value are too narrow.141  In any event, our citation data for 

biotechnology patents prove to be decidedly mute.  

2. An Empirical Haze in Common 

Two recent studies of U.S. patent trends, the Hall Study and an earlier study by Allison 

and Lemley, purport to reach opposite conclusions about the insights that can be gleaned from 

patent characteristics.142  On closer inspection, however, it becomes apparent that the authors 

                                                 
138  This trend is just what one would expect, as the older patents have had the longest time to accumulate 
citations.  We also observe no differences between the medians for either the three categories of assignees or the five 
biotechnology subclasses. 
139  Hall, supra note 8, at 15-16, 23-26. 
140  Allison & Lemley, supra note  8, at 2131 (finding that citation data for a small sample of biotechnology 
patents suggest that most citations are to non-patent sources). 
141  For example, researchers may learn a great deal from their failures or, as some authors have argued, the 
value of a patent may be its role in a portfolio rather than on its own.  Parchomovsky, supra note 12, at 8-10. 
142   The Hall Study provides a comprehensive overview of every patent issued between 1963 and 1999, 
whereas the Allison-Lemley study is a more detailed analysis of a one-thousand-patent sample.  Hall, supra note 8, 
at 8-9; Allison & Lemley, supra note 8, at 2108-09.  For example, beyond the basic information collected in the Hall 
Study, Allison and Lemley provide much more precise information on the technology area of each patent, the 
number and type of prior applications on which each patent bases its priority date, the nationality of the inventor(s) 
and assignee, the number and type of prior art references cited in the patent, and the number and types of claims.  Id.   
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gloss over several significant limitations of their findings.143  This is particularly true of certain 

aspects of the Allison-Lemley study.  For example, the authors investigate average patent 

prosecution times for the fourteen technology fields defined in their study and from these results 

claim that the “patent prosecution system [] spends much more time and attention on some sorts 

of patents than others.”144   

The basis for this conclusion is a regression analysis,145 which reveals that the association 

between technology field and prosecution time is statistically significant (i.e., greater than 

zero146) for five of the fourteen technology fields.147  But the authors fail to report the magnitude 

of these associations, which is essential to interpreting the practical significance of their findings.  

This omission is equivalent to saying that today’s temperature will not be zero without giving 

any indication of how far from zero it is predicted to deviate.148  Their data thus do not disclose 

whether much more time is actually spent on certain classes of patents. 

                                                 
143  The data in the Hall Study undoubtedly provide important insights into aggregate patent trends. The 
primary shortcoming of this study is its failure to examine statistical variance.  Possibly because it is population 
study—as opposed to discrete samples of patents—the authors do not discuss the distribution of their data.  Yet, 
similar to our data, all of their standard deviations are large, hovering around one year, and dwarf the differences in 
their annual averages for prosecution times. at Table 1.  As a consequence, none of the putative trends is meaningful 
from the standpoint of using them as predictors for individual patents. 
144  Id. at 2102. 
145  Linear regression is an alternative mode of statistical analysis that is commonly used to resolve trends in 
sample data.  A primary virtue of regression analysis is that, unlike statistical significant testing, it assesses both 
statistical significance and the magnitude of the association. 
146  In regression analysis, statistical significance implies that one should reject the hypothesis that no 
association exists (i.e., the correlation coefficient, β, equals zero) between the independent variable (e.g., number of 
claims) and the probability that a patent will be litigated.  In other words, if β were zero, there would be a very low 
probability (typically less than five percent) of obtaining the observed β value.  Finkelstein, supra note 120, at 375-
76.  The standard for statistical significance in science is a ninety-five confidence limit, or ±1.96 standard deviations 
from the mean.  Id. at 120-21, 166-67, 171; Rice, supra note  121, at 303. 
147  Allison & Lemley, supra note 8, at 2126-27 (finding statistically significant results for chemical 
pharmaceutical, medical devices, biotech patents, software, and chemical inventions).  The authors use “Poisson 
regression,” which is a variant of standard least-squares linear regression.  This type of regression applies to data 
that fit a Poisson distribution, which is simply a variant of the normal distribution used when the dependent variable 
is discrete (i.e., a count) rather than continuous.  Finkelstein, supra note 120, at 141, 351, 472-73.  The method 
employs a logarithmic transformation of the data, such that the natural logarithm of the dependent variable (here 
prosecution time) becomes a linear function, specifically α + βx, of the independent variable “x” (here patent issue 
date), where α and β are both constants.  Id. 
148  A finding of statistical significance says nothing about whether the magnitude of the difference is large or 
small.  This result may initially appear to be contradictory—how can we find the association statistically significant 
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Allison and Lemley single out their citation data as being particularly compelling.149  

They base this conclusion on the purportedly divergent results among their fourteen technology 

categories.  Their data disclose that the overall median number of references for the fourteen 

technology categories is ten references150 and that the range of median values for the technology 

fields varies from eight references, for semiconductor and communications-related inventions, to 

seventeen references, for biotechnology inventions.151  However, all but three of the technology 

fields are clustered around the median of ten references, and each of the divergent categories has 

a small sample size.152  Accordingly, far from showing dramatic differences, the broad variances 

of their data make it difficult to infer that these differences are real, and where the differences 

appear noteworthy, the data are too thin for one to have confidence in the result.153 

                                                                                                                                                             
and of nominal magnitude at the same time?  This apparent conflict disappears once one realizes that measures of 
statistical significant are independent of the estimated magnitude of the association.  Gerd Gigerenzer & David J. 
Murray, COGNITION AS INTUITIVE STATISTICS 24 (1987).  Statistical significance indicates only that the likelihood of 
no association existing is very low.  Finkelstein, supra note 120, at 120-21; Ian Hacking, An Introduction to 
Probability and Inductive Logic 213-15, 222-23 (2001).  Further, where, as here, the sample of population size is 
very large, it is relatively easy to find statistical significance because the likelihood of finding statistical significance 
increases with sample or population size.  Finkelstein, supra note 120, at 188-89; Gigerenzer, supra note 125, at 15 
(observing that “one can always increase the sample size to a level where the difference will be significant.  
Consequently, the null [hypothesis] can always be disproved if the sample size n is large enough.”).  Accordingly, if 
one is uncertain of the magnitude or nature of the effect, findings of statistical significance may have no physical or 
practical meaning.  Id. 
149  Allison & Lemley, supra note 8, at 2130.  Allison and Lemley rightly observe that prior art references are 
“the best proxy we have in these data for the quality and thoroughness of a patent examination.”  Id. at 2130. 
150  Id. at 2149 (the minimum number of references in a single patent is zero and the largest number is 163).  
The mean is fifteen references, which, with the large maximum number of references and fixed minim of zero 
references, evidences a highly skewed distribution.  Finkelstein, supra note 120, at 4-5. 
151  Id. at 2160.   
152  Id.  Similar trends exist when the references are restricted to U.S patents alone—all but four of the 
technology areas have medians of five to eight references.  Id. at 2158.  Given the skew of their data, Allison and 
Lemley erroneously focus on differences between the mean values, which, unlike the medians, vary from a low of 
nine references for semiconductors to highs of twenty-six and twenty-four references for medical devices and 
biotechnology inventions, respectively.  Id.  The distribution for the number of references in medical device patents 
is the most extreme example of this—it has a ten-reference difference between its mean and median values and the 
highest extreme value of all (163 references).  Id. at 2160.   
153  Allison and Lemley do find one notable difference between the technology fields: pharmaceutical and 
biotechnology patents cite far more non-patent prior art references than the other technology areas.  Id. at 2131, 
2158-59.  The authors also find that patents are the primary references cited in patents, which they rightly challenge 
given the importance of non-patent references in many technology fields.  Id. at 2120-21.  
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The Allison-Lemley study displays the same limitations we observe in our own data.  The 

most consistent features are the large variance of the data and the nominal differences observed 

between classes of patents—differences between classes are much less than the differences 

within them.  This disparity limits the insights these studies can provide.  As we argue above, 

intuitive grounds exist for expecting these results, but a more fundamental reason may also exist.  

It may be that few “general characteristics” of patents exist, and this variability may be 

particularly true of rare high-value patents.  The analytical challenges created by this go beyond 

the descriptive studies analyzed here.  They also hamper predictive studies, like the Valuable 

Patents study discussed below, that seek to identify useful associations between specific 

characteristics of a patent and its economic value or likelihood of being litigated. 

B. The Elusive Search for Metrics of Innovative Success 

Metrics for predicting patent value are receiving significant attention from economists 

and lawyers following the construction of new databases.154  Economists have released 

pioneering studies correlating patent renewal statistics and citation rates to patent value, and they 

were the first to use litigated patents to determine whether valuable patents have distinct 

characteristics.155  Studies by lawyers soon followed with the creation of major databases on 

                                                 
154  Griliches, supra note , at 1669-70 (classic review article describing the need to evaluate patent quality to 
use patents as indicators of innovative output); Dietmar Harhoff, et al., Citaions, Family Size, Opposition and the 
Value of Patent Rights, 32 RESEARCH POL. 1343, 1343-44 (2003) (describing new study that correlates various 
patent characteristics with patent quality); Jean O. Lanjouw & Mark Schankerman, Patent Quality and Research 
Productivity: Measuring Innovation With Multiple Indicators, 114 ECON. J. 441, 442 (2004) (study that develops “a 
composite index of patent quality using multiple characteristics of patents); Lanjouw, supra note 47, at 129 (study 
finding that “the frequency of legal disputes is strongly correlated with a variety of characteristics of innovations and 
their owners”); Lanjouw, supra note 114, 407 (study evaluating the use of patent application and renewal data as 
indicators of patent value); Brownwyn H. Hall, et al, Market Value and Patent Citations, 36 RAND J. ECON. 16, 16-
17 (study assessing the correlation between citations to a patent and its economic value); Jean O. Lanjouw, Patent 
Protection in the Shadow of Infringement: Simulation Estimations of Patent Value, 65 REV. ECON. STUDIES 671, 
672-73 (1998) (simulation model for patent value using data on patent renewals and statutory legal fees from 
Germany); Schankerman, supra note 117, at 78-79 (study providing estimates of the private value of patents based 
on patent renewal decisions).  
155  See, e.g., Schankerman, supra note 117, at 78-79; Lanjouw, supra note 47, at 129, 144-45; Lanjouw, supra 
note 8, at 157-58, 164. 
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litigated patents and comparative work on litigated and non-litigated patents that exploits the 

new data.156  This work has generated important insights but, as we will show, metrics based on 

patent characteristics have severe limitations that have gone unrecognized. 

Among legal scholars, this empirical work is closely associated with concerns about the 

PTO’s growing backlog of patents.  Legal commentators have suggested that PTO resources 

could be economized by limiting reviews of the substantial majority of patents that have little or 

no economic value.157  Their reasoning is simple.  Because the slim tail of high-value patents 

accounts disproportionately for the success of the U.S. patent system, valuable patents ought to 

be subject to careful review by the PTO, whereas the masses of so called valueless patents ought 

to be reviewed lightly.158 

 This triage strategy raises practical and theoretical problems.  At the practical level, it 

requires that valuable patents be identifiable ex ante.  We show that the broad variance of patent 

characteristics makes this exceedingly difficult.  At the theoretical level, it implicates the work of 

Harvard economist F.M. Scherer, who revealed that innovative success is chaotic and resistant to 

statistical methods.159  Scherer’s work has not dampened optimism.  To the contrary, proponents 

of a patent triage system, particularly the authors of Valuable Patents, all but ignore the 

teachings of Scherer’s studies.160  We reassess the empirical bases of this approach to determine 

whether it succeeds in contravention of Scherer’s work.161  

                                                 
156  Moore, supra note , at 367-68; Kimberly Moore;  Allison, Valuable Patents, supra note 5, at 436-38. 
157  See, e.g., Allison, Valuable Patents, supra note 5, at 439, 464-65.  One recent study suggests that more than 
ninety-five percent of all patents issued are neither litigated nor licensed for a royalty and thus presumably have low 
economic value.  Lemley, supra note 17, at 1507. 
158  Allison, Valuable Patents, supra note 5, at 464-65.   
159  Scherer & Harhoff, supra note 19, at 563. 
160  Allison, Valuable Patents, supra note 5, at 462. 
161  James Bessen and Michael Meurer are also critical of this study, but their worry rests on the likely selection 
bias that derives from using litigated patents as a surrogate for valuable patents.  Bessen, supra note 7, at 4-6. 
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Valuable Patents begins with two provocative statistics: patentees spend a total of $4.43 

billion per year obtaining patents, but ninety-nine percent of U.S. patents are never enforced 

through litigation.162  The authors do not find the imbalance between dollars spent on 

prosecuting patents and the lack of enforcement to be problematic.  Instead, they posit that 

“some patents are intrinsically more valuable than others.”163  For them, the important issue is 

identifying the distinctive characteristics of valuable patents.164  Their approach is elegant—they 

use litigation as a proxy for value on the premise that a patent will not be litigated unless it has 

significant economic or strategic value to the patentee.165  Litigation status provides the authors 

with a reliable criterion for collecting a sample of valuable litigated patents to compare against 

otherwise valueless non-litigated patents.166   

 The paper contains two independent empirical studies, one large and one small.  The 

large study uses the Hall Study dataset (i.e., every patent that issued between 1963 and 1999) as 

the putative population of valueless patents.167  Their sample of valuable patents is drawn from 

patent suits that terminated during the period January 1999 to December 2000.168  The smaller, 

and more detailed, second study uses the thousand patents collected by Allison and Lemley 

                                                 
162  Id. at 435. 
163  Id. at 436-37. 
164  Id. at 437. 
165  The authors cite a number of sources to support this premise.  Id. at 441.  Moreover, given that only a small 
fraction of all patents are believed to be valuable, recent estimates suggest less than five percent, the fact that some 
valuable patents will be included in the non-litigated population is unlikely impair their results noticeably.  Lemley 
& Lemley, supra note 8, at 1507 (estimating that “the total number of patents litigated or licensed for a royalty (as 
opposed to cross-license) is on the order of five percent of issued patents”). 
166  As the authors put it, “[o]ur study allows us to evaluate the efficacy of these measures by determining how 
well they predict the likelihood of litigation.  Because litigated patents are a representative subset of valuable 
patents, measures offered as predictors of value should, if accurate, also predict litigation.  Some, but not all, of the 
value measures used by economists pass this test.”  Id. at 456-60. 
167  Allison, Valuable Patents, supra note 5, at 437.   
168  Id. at 437 (the sample consists of 4,247 cases involving at total of 6,861 patents).  To ensure a fair 
comparison, the authors actually weighted the NBER data, such that, “if 1% of the litigated patents were issued in a 
given year, our study gives issued patents for that year 1% of the total weight” for calculation of parameters like 
means and median used in their comparisons.  Id. at 445. 
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(discussed above) as the putatively valueless patent sample.169  The valuable patents are drawn 

from the same sample of law suits used in the first study.170  For each study, the authors 

independently evaluate the characteristics of litigated and non-litigated patents to determine 

whether statistically significant differences exist between the two sets of patents. 

 The authors claim that their “data conclusively demonstrate that valuable patents differ in 

substantial ways from ordinary patents both at the time the applications are filed and during their 

prosecution.  This suggests that valuable patents can be identified before-hand, at least in the 

aggregate.”171  The authors find that litigated patents have numerous stable characteristics,172 

although they single out number of claims, prior citations made, and citations received as 

“unambiguously strong predictors of patent litigation.”173  To clarify the bases of their findings, 

we reexamine the data on these three characteristics and patent prosecution times.174   

 The analytical limits we identified in the preceding subsection apply equally here.175  The 

authors focus exclusively on statistical significance.  Yet, as already noted, statistical 

significance does not have a direct bearing on the strength of association between, say, patent 

value and number of patent claims; it only demonstrates that it is very unlikely that no 

                                                 
169  Id. at 437, 446.  The additional variables in the second study include the following: (1) prior art citations to 
foreign patents and no-patent prior art, (2) nationality of assignee, (3) assignee status as “small entity”, and (4) a 
refined fourteen-category assessment of the area of technology.  Id. at 446. 
170  Id. at 437.  Only the 300 law suits for which the patents at issue were granted between mid-1996 and mid-
1998 are included.  Id.  This constraint is imposed to ensure that the litigated patents were issued during the same 
years that the non-litigated patents were issued.  Id. 
171  Id. at 438.  The authors also conclude that “valuable patents differ in substantial ways from ordinary patents 
both at the time the applications are filed and during their prosecution.”  Id. 
172  Id. 
173  Id. at 451 (“The more claims, prior art citations, and citations received a patent has, the more likely it is to 
be litigated.”). 
174  The authors identify several additional “significant predictors of litigation,” including the number of patent 
applications associated with a patent, the length of time for patent prosecution, and patent age at time of litigation.  
Id. at 456-60. 
175  This consistency should come as no surprise given that this paper uses data collected in both the NBER and 
Allison-Lemley studies and utilizes the same types of statistical methods.  Id. at 437. 
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association exists at all.176  Weak associations, though statistically significant, will have no 

predictive value for either individual patents or samples of modest size; their only value will be 

in estimating the relative proportion of valuable patents in a large sample.   

1. Statistical Significance Without Predictive Power 

 Virtually all of the authors’ statistical analyses are conveyed in two tables at the end of 

the paper.177  In Tables 1 and 2 below, their findings are presented to ensure that the results of 

the two studies are readily comparable.  For our purposes, two of the factors in the Tables are of 

particular interest: (1) “p-values,” which typically must be less than five percent (0.05) for the 

result to be statistically significant, and (2) “unit increases,” which represent the percentage 

change for each unit increase in a descriptive variable (e.g., number of patent claims).178   

Table 1:  Large Study Statistics 

 p-value Odds 
Ratio 

Unit 
Increase 

Not 
Litigated179  

Litigated  Probability 
Diff.180 

No. Claims <0.0001 1.014 1.4% 13 20 10% 
Pros. Time <0.0001 1.024 2.4% 2.8181 4.1181 3% 
Cites Received <0.0001 1.128 13% 4.3 12.2 159% 
Cites Made <0.0001 1.096 9.6% 8.4 14.2 70% 
U.S Corp. <0.0001 0.733 -27% 0 1 -27% 
Foreign-Corp <0.0001 0.523 -47% 0 1 -47% 
U.S. Individual 0.0003 1.450 45% 0 1 45% 
U.S. Gov’t <0.0001 0.072 -93% 0 1 -93% 
Chemical <.0001 0.663 -34% 0 1 -34% 

                                                 
176  Indeed, because the number of patents in the two studies is quite large, even weak associations will be 
found to be statistically significant.  See note 148. 
177  Id. at 478-79.  The regression analysis is the same in both, although the data are presented somewhat 
differently. 
178  For example, if a unit increase for the number of claims in a patent is two percent, a patent with one more 
claim than another, say fourteen claims versus thirteen, has a two percent greater probability of being litigated. 
179  Binary categories, such as whether an invention is mechanical or not, are categorized as “zero” (not 
litigated) or “one” (litigated).  Non-binary categories, such as number of claims or citations, are categorized by the 
mean number of claims for litigated and not-litigated patents.   
180  This column provides an estimate of the increase in the probability that a patent will be litigated between 
the mean values of non-litigated patents and litigated patents.  Small differences indicate that the characteristic at 
issue does not provide an effective means of discriminating between valuable litigated and non-litigated patents. 
181  Mean values for the prosecution times were not provided for the large study; we use the means observed in 
the sample study as surrogates. 
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Computers & 
Communications 

<.0001 1.673 67% 0 1 67% 

Drugs & Med. <.0001 1.841 84% 0 1 84% 
Electrical & 
Electronics 

0.0078 0.876 -12% 0 1 -12% 

Other Tech. <.0001 1.344 43% 0 1 43% 
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Table 2:  Sample Study Statistics 
 
 p-value Odds 

Ratio 
Unit 
Increase 

Not Litigated179 Litigated Probability 
Diff.180 

Ind.-claims 0.0060 1.095 9.5% 2.8 4.4 16% 
Dep.-Claims 0.0807 1.013 1.3% 12.1 21 12% 
Pros. Time182 0.0962 1.108 11% 2.8 4.1 14% 
Cites Rec. 0.0001 1.162 16% 1.3 3.4 37% 
Cites US-Pat 0.1703 1.008 0.8% 10.3 22.8 10% 
Cites For-Pat 0.0228 1.021 2% 2.4 8.3 13% 
Total Apps. 0.2421 1.162 16% 1.5 2.6 16% 
Foreign Invtr. 0.0001 0.21 -79% 0 1 -79% 
Individual 0.0001 2.821 182% 0 1 182% 
Small Bus. 0.0001 3.162 216% 0 1 216% 
Electronics 0.0015 2.616 162% 0 1 162% 
Med. Devices 0.0521 0.526 -47% 0 1 -47% 
Chemistry 0.0088 2.364 136% 0 1 136% 
Mechanics 0.0001 4.818 382% 0 1 382% 
Auto Related 0.0194 0.326 -67% 0 1 -67% 
 

Average Time for PTO Patent Prosecution.  The association between prosecution time 

and probability of litigation is marginal.  For their large and small studies, we calculate a three- 

and fourteen-percent difference, respectively, between non-litigated and litigated patents.183  The 

large study exemplifies the limited value of statistical significance for large samples, which 

because of their high statistical power cause even nominal differences (here three percent) to be 

found statistically significant.  The smaller, less-powerful study identifies a larger, though still 

modest, association between prosecution time and probability of litigation.  However, the 

estimated value, though larger, is not statistically significant, meaning that zero association 

                                                 
182  As noted earlier for the Allison-Lemley study, patent prosecution time is measured from date of earliest 
application, whereas we measure prosecution time only as of the filing date of the most recent patent application.  
Id. at 459. 
183  More precisely, litigated patents are only three (large study) and fourteen (small study) percent more likely 
to have been prosecuted for average prosecution time for litigated patents than non-litigated patents.  In other words, 
at the peak of the distribution for litigated patents, litigated patents are only slightly more likely than non-litigated 
patents to have been prosecuted for this length of time. 
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cannot be rejected.  In either case, the slight differences in patent-review times are plainly 

inadequate for predicting whether a patent is likely to be litigated. 

Average Number of claims.  This characteristic is also a poor predictor of whether a 

patent is likely to be litigated.  While the association is statistically significant, its magnitude is 

small—just a 1.4 percent increase per claim for the large study and 9.5 percent per independent 

claim (only 1.3 percent per dependent claim) in the sample study.  The weakness of the 

association is evident in the small difference in the probability of litigation—less than twenty 

percent—between the average number of claims for non-litigated and litigated patent samples.  

Moreover, the author’s use of averages, rather than medians, will likely over estimate the 

differences between litigated and non-litigated patents.184  These weak associations simply 

reflect the fact that counting claims does not tell us much about the nature of a patent. 

 Average Number of Citations Made and Received.  The data on citations made by patents 

are, at best, ambiguous.  The large study suggests quite a strong association, about a seventy 

percent difference between the average values for litigated and non-litigated patents.  By 

contrast, the small study finds the differences to be nominal, only about ten percent, and not 

statistically significant.  The large differences between the two studies are indicative of the 

instability of these estimates and grounds for caution when assessing whether the number of 

citations made by a patent is a reliable metric.185  

                                                 
184  We infer that the distributions are skewed from the Hall Study and Allison-Lemley data, both discussed 
above, both of which are integrated into this study, and we have no reason to believe that the data for the litigated 
patents, which are subsets of the other two studies, will be any different.  Further, the standard error of a regression 
coefficient, which they use to calculated statistical significance, can underestimate the variance of the coefficient.  
Finkelstein, supra note 120, at 475-76.  Accordingly, the authors’ findings of statistical significance, particularly 
where they are close calls, could be inaccurate. 
185  In their discussion, the authors log transform their data with no explanation whatsoever and then fail to 
explain the differences between the log-transform results for statistical significance and the results reported in their 
logistic analysis in the tabulated data.  Allison, Valuable Patents, supra note 5,at 454. 
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Both studies reveal a consistent and sizeable association between average number of 

citations to a patent and its litigation status.  The large study, because of its much higher 

average,186 demonstrates that the number of citations received is well correlated with the 

litigation status of a patent.  Litigated patents on average receive 1.6 times more citations.187  The 

large study thus provides solid grounds for a significant association existing between the number 

of citations a patent receives and its litigation status.   

 Status of Owner and Technology Areas.  It is worth commenting briefly on owner status 

and the differences observed between technology areas.  Both studies reveal strong positive 

associations if the patent owner is an individual, and the sample study shows a strong association 

when the owner is a small business.188  Similarly, strong associations are evident for certain 

technology fields, particularly mechanics (small study) and computers and communications 

(large study).189  Several jarring differences between the two studies nevertheless exist.190  For 

example, the small study finds strong positive associations for electronics and chemistry, 

whereas the large study predicts modest negative associations for similar fields.191  The strength 

                                                 
186  The two studies generate divergent estimates of the difference in average number of citations received per 
patent between litigate and non-litigated patents.  However, this disparity is almost certainly attributable to the fact 
that the small study is limited to patents granted relatively recently, whereas the large study is not—the small study 
is limited to patents that issued between 1996 and 1998, whereas the large study includes patents that data back to 
1963.  Id. at 445. 
187  It is nevertheless important to reiterate that the authors’ use of averages, as opposed to medians, causes the 
difference between non-litigated and litigated patents to be over estimated. 
188  The significance of the large study data is strengthened by the strong negative associations for U.S. and 
foreign corporations and the U.S government.  We have no sense, other than the differences between the two 
studies, of the variance of these estimates; we only know that they are statistically significant. 
189  The authors analyze their data using two distinct methods.  For example, they claim “striking variations by 
industry,” emphasizing med-devices, computer-related, software, electronics, and mechanics as being more likely to 
be litigated and chemistry, automotive-related, semi-conductor inventions as being much less likely to be litigated.  
Id. at 474-75.  Yet, the regression analysis of the sample study finds that the associations with semiconductor, 
computer-related, and chemical inventions are not statistically significant.  Id. at 479. 
190  The large variability between studies may also reflect a large variance in the regression coefficients, which 
may not be accurately represented in the standard error used to calculate statistical significance.  Finkelstein, supra 
note 120, at 475-76. 
191  The authors are in fact dismissive of the level of association between technology areas and probability of 
litigation in the large study because of the roughness of its classification scheme, despite the fact that the magnitudes 
of the associations are some of largest for any of the characteristics evaluated in the large study.  Id. at 466, 471-76.  
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of the association for individual inventors is also markedly different (more than a factor of three) 

between the two studies.192  As above, these differences suggest that one should be cautious 

about reading the strength of these associations too literally. 

Our reanalysis clearly affirms two of the authors’ central conclusions: the strong 

association between citations received per patent and the status of the patent owner.  It also finds 

solid evidence for concluding that mechanical patents are more likely to be litigated than the 

average patent.  This interpretation of the Valuable Patents data departs from that of the authors 

with respect to the three standard patent characteristics, which we find to be poor predictors of 

whether a patent is likely to be litigated.   

If our analysis were to stop here, some prospect, albeit limited, would remain for 

prioritizing the PTO’s patent prosecution process.  Unfortunately, as the next subsection will 

show, a more fundamental problem also exists.193  The small fraction of litigated patents makes it 

exceedingly difficult to exploit differences that may exist between non-litigated and litigated 

patents.  Other than extreme values (e.g., patents with fifty or more citations), the distribution of 

non-litigated patents will overwhelm that of the litigated patents.  This finding implies that, for 

the vast majority of patents, even patent characteristics strongly associated with economic value 

will have only nominal predictive power.     

                                                                                                                                                             
If one assumes that conflicting results between the studies cancel each other and suspends judgment on technologies 
likely to have low sample sizes (i.e., medical devices, auto-related patents), the only technology field with a firmly 
established, strong association is mechanics.  
192  Some of these divergences may derive from the low sample sizes for the small study.  Sample-size 
problems will be particularly at issue for the 300 litigated patents, which the author’s divide into fourteen 
technology fields, implying that most categories will have fewer than thirty patents (a standard minimum number 
used by statisticians).  Finkelstein, supra note 120, at 4-5.. 
193  It is also worth noting that citations received are not manifested until after a patent issues and cannot be 
assessed for a still longer period of time.  In fact, rather predicting value, the association with citations received may 
run in the opposite direction—the success of a patented invention and the ensuing recognition that the patent on it is 
valuable my be what alerts other inventors to cite the patent, as opposed to strict substantive judgments. 



 54

2. Base Rates and the Slim Tail of Innovative Success 

 The economist Joseph Schumpeter once famously speculated that a small number of 

inventions account for a disproportionate share of the total profits from inventive activities.194  

F.M. Scherer was among the first economists to provide a sound empirical basis for 

Schumpeter’s prediction.195  In addition to confirming Schumpeter’s hypothesis, Scherer showed 

that “it is very hard or maybe even impossible to secure stable average profit returns by pursuing 

portfolio strategies, e.g., pooling many research and development projects into a portfolio.”196  In 

other words, the pooling of risks permitted by standard statistical methods is ineffectual in the 

face of the variability that is characteristic of innovative success. 

 In this tail-wags-dog universe, statistical measures, such as averages and standard 

deviations, are often erratic and unreliable.  This failure arises because statistical analyses are 

driven by the center of a sample distribution, not its periphery.  Consistency—and 

predictability—emerge because the large number of small, random events cancel out each other, 

exposing the systematic influences on the population as a whole.  Patents defy this basic model 

because a small number of extremely valuable patents are disproportionately important to 

aggregate innovative success; it is the aberrant patents that make the difference. 

 Scherer’s results are at odds with recent empirical work on valuable patents—if general 

descriptive statistics fail, statistical analyses of specific patent characteristics will fail for the 

same reason.  Scherer likens the market for innovation to a sweepstakes, “the innovation lottery,” 

that randomly bestows huge prizes on a very small number of winners.197  In Valuable Patents, 

                                                 
194  Joseph A. Schumpeter, CAPITALISM, SOCIALISM, AND DEMOCRACY 73-74 (1942). 
195  Scherer & Harhoff, supra note 19, at 563; Fredrick M. Scherer, The Innovation Lottery in EXPANDING THE 
BOUNDARIES OF INTELLECTUAL PROPERTY: INNOVATION POLICY OF THE KNOWLEDGE SOCIETY 3, 4 (Rochelle C. 
Dreyfuss, et al., eds. 2001). 
196  Id. at 7.   
197  Id. at 15-16. 
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the authors make their objections to Scherer’s lottery theory explicit: “if valuable patents can be 

reliably identified . . . the lottery theory runs into difficulty.  At best, it becomes only a partial 

explanation.”198  The paper in fact turns on Scherer being wrong, and the authors acknowledge 

that PTO policy cannot be rationally calibrated and targeted towards certain classes or types of 

patents if Scherer’s findings are accurate.199  

 The findings of statistical significance presented in Valuable Patents are interpreted as 

refutations of Scherer’s work.200  These proofs fall short of the mark.  All that the paper 

establishes is that weak associations between patent value (i.e., litigation status) and certain 

patent characteristics are unlikely to be the result of random variation.  Their findings—unlike 

strong, consistent predictors of patent value—are not incompatible with Scherer’s empirical 

findings.  To the contrary, Scherer’s work implies only that statistical measures, such as average 

values, are unstable over time and unreliable in the long run.  Evidence of slight, often uneven 

associations from two samples of patents cannot refute Scherer’s findings.  Moreover, absent 

adequate disproof that inventive processes are chaotic, one would be foolish to rely on their 

results as trustworthy long-term estimates of the associations they purport to identify.  

The authors’ characterization of the results in Valuable Patents is also somewhat 

misleading.  They fail to acknowledge the practical problems inherent in their approach.  As we 

have pointed out several times, a finding of statistical significance is not proof that an association 

has predictive power.201  This oversight is ultimately secondary, though, as a much more acute 

                                                 
198  Allison, Valuable Patents, supra note 5, at 462 (citations omitted). 
199  Id. 
200  Id. at 463-65. 
201  The authors acknowledge that identifying valuable patents at the time of application or issue may be 
possible only “in the aggregate.”  Id. at 438.  However, this is akin to claiming you have come up with a security 
system for detecting terrorists in airports, but the system cannot identify specific terrorists and only provides rough 
probabilities of finding a terrorist in the general population.   
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obstacle exists.  The process of identifying valuable patents presents a standard “base rate” 

problem because they constitute such a small minority of the patents issued.202   

Making predictions with low base rates is akin to looking for a rare brand of needle, 

which may or may not have distinctive attributes, in a needle stack.  A slightly different example 

will illustrate this point.  Assume you are attempting to identify a small subset of valuable 

objects from a much larger collection based solely on their size and color.  Low base rates, 

essentially the disparity in numbers between the valuable subset and the full collection, imply 

that the only valuable objects from the subset capable of being identified unequivocally will be 

those with colors and sizes that are very rarely found in the broader collection.203  By the same 

logic, if the distributions of sizes and colors in the small subset overlap significantly with those 

of the broader collection, few if any objects in the subset will be reliably identifiable.   

The citation data from the large study reported in Valuable Patents illustrate the low 

base-rate problem well.  Recall that the averages for number of citations received by the non-

litigated and litigated patents were 4.3 and 12.2, respectively.204  We also found that patents 

receiving 12.2 citations are about 1.6 times more likely to be litigated than those that receive 4.3 

citations.205  Using this regression analysis, we calculate that litigated patents will constitute 

approximately 1.4 percent of all patents with twelve claims, whereas more than ninety-eight 

                                                 
202  Base rate refers to the proportions, or rates of occurrence, of the two classes of patents—the small number 
of valuable patents and the large number of valueless patents.  As discussed earlier, it is well established that only a 
small faction of the patents issued are valuable.  Mark Lemley, supra note 17, at 1507 (estimating that the 
proportion of valuable patents is less then five percent of the total issued). 
203  Because the numbers are so much greater in the collection, the numbers of objects with even relatively rare 
colors and sizes (the tails of these distributions) in the collection will overwhelm the numbers in the subset—even if 
the objects with those colors and sizes make up a much larger fraction of the small subset.  For example, assume 
there are 1000 objects in the collection (i.e., excluding the subset) and fifty in the subset.  Assume further that two 
percent of the objects in the collection (20) are red and that forty percent of the objects in the subset (20) are red.  
Despite the disparity in percentages, red would provide a very poor basis for identifying the objects in the subset, as 
any given red object would be equally likely (a fifty-percent chance) to come from either the collection or the 
subset. 
204  Allison, Valuable Patents, supra note 5, at 453-54. 
205  Infra Part II.C. 
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percent will be valueless.206  Even among patents with fifty claims, litigated patents will 

constitute only about twenty-five percent of the total, and only beyond fifty-five claims are 

litigated patents projected to exceed the number of non-litigated patents.  The implications of this 

example are clear—even if reliable, the weak associations identified in Valuable Patents will 

not, as a practical matter, be able to predict whether an individual patent is valuable. 

  The base-rate problem and the highly skewed distributions of most patent metrics create 

formidable obstacles to effective empirical studies of U.S. patents.  These statistical barriers 

demonstrate that studies of general patent characteristics will offer few insights into the nature of 

individual patents or even fairly large ensembles of patents.  The hope that patent policy, and 

particularly PTO review of patent applications, can be rationalized and calibrated using simple 

patent metrics is undone by implication.  Instead, the value of most empirical work on patents 

will be limited to the broad aggregate trends that it reveals.   

It is important to recognize that the analytical barriers identified here stem from the 

phenomena beings studied, not primarily from methodological shortcomings.  The complex array 

of factors that drive innovation are not reducible to a few variables.  Inventive success is simply 

a hard phenomenon to study given our current level of knowledge and the subject matter’s 

inherent complexity, that is the inherent heterogeneity of patents (and inventions), the non-

linearities of innovative success, and the dynamic nature of science.  

The current excitement about using empirical methods has arguably obscured these basic 

limits.  Given the void of data that we typically confront, this oversight is understandable—in the 

                                                 
206  The reason for this is actually quite straightforward.  Even though valuable patents may be much more 
likely to have certain characteristics (e.g., large numbers of citations) than valueless patents, the far greater number 
of valueless patents more than offsets the differences in relative probabilities.  Assume that you have 105 patents 
and that only ten are valuable.  Assume further that valuable patents are five times more likely to have a 
characteristic than valueless patents.  If valuable patents have a twenty-percent chance of having the characteristic, 
then valueless patents have only have a four-percent chance.  However, in absolute numbers, four valueless patents 
will have the characteristic while only one valuable patent will have it. 
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realm of innovation policy, “patent statistics loom up as a mirage of wonderful plentitude and 

objectivity.”207  High hopes alone, however, cannot overcome the innate unpredictability of 

innovation and the highly skewed distribution of its benefits.  Ironically, it may be a naïve 

enthusiasm for the rigor of empirical work that has caused academics to reify simple statistical 

metrics over the self-evident complexity of inventive processes. 

Empirical studies are as challenging as they are alluring.  It is therefore with some 

caution that we close by suggesting possible directions for new empirical work.  Our analysis 

shows the difficulties entailed in interpreting patent data and the value of drawing on multiple 

types of data to construct a composite picture of patenting in a field.  These findings suggest the 

need for more integrative studies that bring together patent data, economic studies, independent 

information on innovative output (e.g., publication data), and knowledge about the nature of 

research and development in the relevant field.  The deficiencies we have identified also 

demonstrate the importance of expanding the methods available to study the interplay between 

patents and innovation.  To this end, recent work using network theory and citation data is 

particularly important and promising.208   

At a more fundamental level, this study has caused us to reassess whether the current 

focus on patents is ignoring other important opportunities for empirical work.  The core issue is, 

of course, fostering innovation.  Yet, as economists have long recognized, patents are a weak, 

though still valuable, measure of innovative output.  The strategy of this paper rests, in part, on 

utilizing complementary metrics, such as research and development funding levels and numbers 

of entities entering the field, that are readily measurable, less subject to the severe interpretive 

challenges of patent-count data, and arguably more directly representative of trends innovation 

                                                 
207  Griliches, supra note 43, at 1661. 
208  See Csárdi, supra note 112. 
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markets and networks.  Importantly, this approach shifts the focus from aggregate innovative 

output to the dynamics of competition and support between individuals and institutions, whether 

public or private, engaged in research and development.  

In one sense, this type of approach is unremarkable.  Legal scholars and economists, for 

obvious reasons, have long been concerned about the interplay between patents and innovation, 

such as the impacts of patents on important follow-on research derivative of a keystone patent.  

In another sense, it differs fundamentally from a patents-oriented model by shifting the focus to 

the dynamics of innovation itself.209  For example, rather than asking questions about the general 

characteristics of valuable inventions, which are subject to large variances, we might focus 

instead on determining the characteristics of vibrant innovation markets, such as the balance 

between large and small companies or the number of entities in a field, and how these market 

characteristics evolve as a technology matures.  Above all, this kind of strategy has the potential 

to allow us to identify more informative indices that are less likely to be subject to the chaotic 

behavior and uncertainties that are characteristic of patent metrics.  

IV. Conclusions 

The question motivating this Article—do we have too much of a good thing?—turns on 

the distribution of patents across distinct areas of research and development.  Our data reveal the 

striking rise and fall in biotechnology patenting and the surprisingly diffuse and expanding 

                                                 
209  Ecology and evolutionary biology, which involve the study of natural processes of innovation and 
competition, may have a lot to teach us about these dynamics.  Like innovation markets, ecosystems must balance 
the opposing processes of natural selection (i.e., competition that ensures resources are used efficiently) and species 
diversification (i.e., natural innovation), which is essential to its long-term resiliency and adaptability to 
environmental change.  This balance is maintained by, among other things, through the existence of ecological 
niches, which spare less fit species from competition that they are destined to lose.  Although the relationship is not 
a simple one, the balance between dominant and niche species, as well as of overall species diversity, are important 
indicators of ecosystem productivity and health.  Similar indicators should exist for innovation markets and 
networks.  Indeed, one can imagine how patents can preserve such a balance, by giving small players the space to 
operate, or undermine it, by giving already-dominant entities rights that allow them to dominate a field of invention 
completely.  Drawing on work in these fields may aid legal scholars in identifying more viable indices. 
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patterns of patent ownership.  We conclude that the lack of concentrated control, rising number 

of patent applications, and the continuous influx of new patent owners suggest that overall 

biotechnology innovation is not being impaired by the growth in patents issued each year.   

Our analysis also reveals the many pitfalls of seeking to resolve this question at a 

synoptic level using simple metrics.  In this sense, both the advocates of the anticommons theory 

and enthusiasts of patent characteristics err by oversimplifying the multi-dimensional character 

of patent dynamics.  This Article has shown that identifying putative areas of dense patenting 

based on patent counts alone tells you very little about whether anticommons problems are likely 

to exist.  Similarly, patent metrics based on general patent characteristics have only nominal 

predictive value as applied to individual patents.  These observations reveal the risks of overly 

reductive theories and empirical methods, and their close parallels with each other.   

The analytical obstacles we have described place a premium on developing new, creative 

approaches to studying U.S. patents.  Complementary sources of information beyond legal 

sources can no doubt aid in filling some of these gaps.  However, patents offer a unique source of 

data, particularly given the strong incentives companies have to withhold information, and they 

represent one of the most direct links between legal policies and innovation.  It is therefore worth 

thinking carefully about how patents can be used more effectively in empirical work and, 

perhaps more ambitiously, about how rules governing patent content could be redesigned to 

facilitate research on and monitoring of patent trends. 
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V. Figures 
 
Figure 1- Number of Biotechnology Patents Issued Yearly, 1990-2004  (n=52,039)
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Figure 2- Number of Biotechnology Patents Issued per Year, 
by Technology Group (n=52,039)
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Figure 3- Number of Patents Issued in the Top USPTO 
Biotechnology Sublasses, by Year (n=52,039)
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Figure 4- Patents Issued in the Top 30 Biotechnology Subclasses, 
1990-2004  (n=52,039)

year

1990
1991

1992
1993

1994
1995

1996
1997

1998
1999

2000
2001

2002
2003

2004

nu
m

be
r o

f p
at

en
ts

 is
su

ed
 

0

1000

2000

3000

4000

5000

6000

7000

top 30 subclasses 
overall biotech trend 

 
 



 65

Figure 5- Biotech Patents Issued to Four Classes of Companies 
Yearly, 1990-2004
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Figure 6- Biotechnology Patents Issued to University, Corporate, 
and Government  Assignees Yearly, 1990-2004 
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Figure 7- Assignments of Biotech Patents to Corporations, Universities and 
Government  by Technology Group, 1990-2004 
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Figure 8- Number of Assignees of Biotechnology Patents Yearly, 1990-2004
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Genetically Modified Organisms, Immunological, and Nucleotide Sequence Patents
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Figure 9a- Number of Assignees by Technology Groups Yearly, 1990-2004

Method and Protein Sequence Patents
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Corporate Assignees
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Figure 9b- Number of University and Corporate Assignees Yearly, 1990-2004

University Assignees
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Appendix: Data and Methodology 

   The biotechnology patent database consists of 52,039 patents that issued between 

January 1990 and December 2004.  These patents were collected from a larger patent database 

consisting of all patents, more than 950,000 in total, that issued between January 1990 and 

March 2005.  These data were obtained directly from the PTO, which has electronic files dating 

back to at least 1963.210  Once the data for all patents issued from January 1990 and March 2005 

were collected, they were converted to a consistent format for analysis.211   

The primary issue to resolve in constructing the database was the criteria we would use to 

determine whether to include or exclude a patent.  As other commentators have acknowledged in 

similar contexts,212 the process of categorizing inventions into subject areas is part art and part 

science that entails difficult judgment calls, and one is unavoidably confronted with inventions 

that defy simple categorizing.213  Making these decisions proved to be particularly difficult in 

areas where pharmaceutical research and development closely parallels, or overlaps, 

biotechnology work.  We therefore focused our attention on ensuring that our data were not 

confounded by patents on inventions associated with traditional pharmaceutical research.   

We adopted a two-stage approach: first, we constructed an unambiguously over-inclusive 

database of biotechnology-related patents using general PTO classes; second, we pared down 

                                                 
210  The raw data were transferred to us in a large number of smaller, sometimes incompatible databases, which 
had to converted to a “.dat” format to allow them to be combined and manipulated.  The PTO provided the data for 
1990-1996 on CD in a single database.  Week-by-week data for 1996-2005 were downloaded from the .ftp site 
operated by the PTO and converted from either .xml or .sgml format to .dat or .gbk format using PERL scripts 
publicly available from the PTO. 
211  This was no small undertaking because the PTO databases varied over this period and often were not inter-
compatible.  All raw data files were converted to text files, and these filed were then concatenated into four major 
data tables, with each table linked by the patent number for each patent.  The four data tables are (1) Patent 
Information (“Patinfo”), (2) Primary Class (“Class prim”), (3) “Class,” and (4) Assignee Name (“AsnNam”). A 
number of minor modifications were also made to compile the data properly.  In particular, a few entries in each file 
were corrupted and deleted (<1%) and spacing within columns in each file were adjusted to be uniform (i.e., from a 
variable format to an eighty-character fixed-length format). 
212  Allison, Valuable Patents, supra note 5, at 2109. 
213  Line-drawing is complicated further by the byzantine PTO classification scheme, which includes about 400 
main classes and more than 120,000 subclasses.  Hall, supra note 8, at 13. 
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this over-broad dataset using several criteria.  The first broad database was drawn from forty-

nine PTO classes and contained a total of 89,619 patents.214  For construction of the second, 

narrower database we employed three complementary strategies.  We examined the PTO 

subclasses in which well-established biotechnology companies were obtaining patents,215 

reviewed the subclasses that the PTO treats as biotechnology fields, and undertook our own 

independent assessment of potentially relevant PTO subclasses to determine their relevance.  The 

process was an iterative one in which we started with the first strategy and then compared these 

results against the PTO classification system.  Where there were differences, or we had our own 

reservations about specific subclasses, we undertook our own detailed analysis. 

After several rounds of this process, our analysis converged on a final database 

comprised of patents whose primary PTO classification falls under one of 704 PTO 

subclasses.216  As general rule, we sought to be inclusive as possible, but where a subclass might 

include a few biotechnology inventions but otherwise be dominated by inventions in other fields, 

we opted to exclude those subclasses.217  Most differences between the subclasses included in 

our database and the PTO’s biotechnology art unit-based designation of biotechnology 

subclasses derived from our efforts to avoid overlap with pharmaceutical inventions and our 

decision to exclude agricultural biotechnology inventions from the database.218  

                                                 
214  The specific PTO classes included were 023, 047, 071, 111, 117, 127, 128, 201, 202, 203, 204, 205, 210, 
260, 422, 423, 424, 435, 436, 504, 514, 516, 518, 530, 532, 534, 536, 540, 544, 546, 548, 549, 552, 554, 556, 558, 
560, 562, 564, 568, 570, 585, 600, 604, 606, 607, 800, 930, 987.  These were subsequently winnowed down to just 
the following six classes: 424, 435, 514, 530, 536, and 800. 
215  The companies used for these purposes included the following: Amgen, Genentech, Gilead, Chiron, 
Genzyme, Biogen, IDEC, Millenium, Celgene, and Medimmune. 
216  To provide an admittedly low baseline, the NBER study includes only two classes, 435 and 800, which 
account for less than fifty percent of the patents in our database.  Hall, supra note 8, at Appendix 1. 
217  We also had to contend with “orphan” subclasses, which were operational during the early part of the study 
and abandoned by the end of the study.  To the extent that we could, we re-assigned patents to the new subclasses, 
but this was a laborious process and often not worth the effort given the relatively small number of patents involved. 
218  Two other related areas of invention that we were careful to avoid were organic compounds and surgical 
procedures, both of which were mixed into the classes covering biotechnology inventions.  We decided to exclude 
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 The database contains general information on each patent issued, and can be easily 

updated to include patent data as it is added to the PTO website.  The specific categories of 

information include the following: patent number, application number, patent title, issue date,  

assignee, primary subclass, other subclasses, art unit, number of claims, number of figures, 

primary examiner, assistant examiner, and search classes.  We also augmented the data we 

received from the PTO by integrating data on patents issued from January 1990 through 

December 1999 from a database, “The NBER Patent Citations DATA File,” compiled by several 

researchers associated with the National Bureau of Economic Research (“NBER”).219  These 

data gave us two additional categories: (1) number of citations made by each patent granted 

during the 1990s, and (2) number of citations received by each patent during the 1990s. 

 We organized the data into discrete data tables to run comparative analyses.  The first of 

these was structured around distinct, albeit still somewhat artificial, biotechnology subfields.  

Drawing on intermediate categories evident in the PTO classification system, we divided the 

dataset into five distinct areas of biotechnology research and development: (1) measuring and 

testing processes (“MET”),220 (2) polypeptide (i.e., short protein subsequences) and protein 

sequences (“PSQ”), (3) nucleotide (i.e., DNA, gene) sequences (“NSQ”), (4) immunological 

processes and compounds (“IGG”),221 and (5) genetically modified organisms (“GMO”).  These 

categories were chosen because they aligned reasonably well with the patents in the database, 

because they made sense scientifically, and because of their importance in the field of 

                                                                                                                                                             
agricultural biotechnology inventions because of the divide—political, policy, and economic—that exists between 
the agricultural and biomedical biotechnology sectors. 
219  Hall, supra note 8. 
220  Examples of these inventions include genetic test kits, gene chips, micro-array technology, and polymerase 
chain reaction technologies. 
221  The most important class of inventions in this area is monoclonoal antibodies, but it also includes many 
other related technologies as well. 
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biotechnology research and development.222  Each category is treated as exclusive, although 

some inventions could be placed in more than one subfield.  While this ordering could bias our 

results, we believe that, given the large number of patents studied, its effects are likely marginal.  

 We created one final subdivision of the data for our analysis.  Patents were categorized 

according to their ownership status, that is whether the assignee of the patent was the federal 

government, a university, or a corporation.223  In addition, to obtain a sense of possible 

substructures within the corporate category, which is by far the largest one, we created four 

groups of companies: (1) ten large biotechnology companies based on an examination of 

revenue, profits, and number of employees;224 (2) ten, somewhat randomly chosen, mid-range 

biotechnology companies, virtually all of which were operating at a loss;225 (3) the ten 

biotechnology companies with the largest patent portfolios;226 and (4) the ten pharmaceutical 

companies (i.e., not solely biotechnology) with the largest patent portfolios.227  These groupings 

are included in comparative analyses. 

We conducted three central analyses of the data.228  First, similar to a number of existing 

studies, we examined trends for specific characteristics of the patents, these included the number 

                                                 
222  Nevertheless, despite our best efforts, categories do unavoidably overlap—for example, specific 
polypeptide or nucleotide sequences may be claimed as probes used in measuring or testing inventions.   
223  We do not distinguish between foreign and U.S.-based assignees because the PTO data we obtained did not 
include this information.  In addition, given the limits of the data base, we assume that all biotechnology patents are 
assigned, which we believe is reasonable given the high costs and resources required to do biotechnology research. 
224  The group of large, successful companies includes Amgen, Genentech, Biogen IDEC, Genzyme, Serono, 
Chiron, Gilead, Affymetrix, Medimmune, and Cephalon.  All of these companies are profitable, with net profits in 
2004 ranging from $25 million to $2.36 billion. 
225  The mid-range biotechnology companies include Progenico Pharmaceuticals, Isis Pharmaceutical, Incyte 
Corp., Human Genome Sciences, Xoma, Ltd., Intermune, Amyline Pharmaceutical, Inc., Myriad Genetics, 
Alkermes, Inc., and United Therapeutics.  Only one of these companies, United Therapeutic, is currently reporting a 
net profit, although all reported sales in 2004 of from about $10 to $150 million. 
226  The biotechnology companies with the ten largest patent portfolio include Genentech, Incyte Corp., Isis 
Pharmaceutical, Chiron, Human Genome Sciences, Amgen, Zymogenetics, Immunex, Applera, and Corixa. 
227  The pharmaceutical companies with the ten largest patent portfolio include Smithkline, Merck, General 
Hospital Corporation, Eli Lilly, Aventis, Schering, Millennium, Novo Nordsk, Dupont, and Roche. 
228  All of the analysis was conducted in SAS v. 9.1, licensed to the University of Arizona.   
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of claims, the length of patent prosecution, and the number of citations made and received.229  

Second, we analyzed trends based on assignee type (i.e., corporations, universities, federal 

government) and assignee size, as well as the thirty assignees with the largest number of patents.  

Third, we evaluated patent trends based on the five biotechnology subfields listed above—

measuring and testing processes, protein sequences, nucleotide sequences, immunological 

processes and compounds, and genetically modified organisms.  All of the data were evaluated to 

determine trends over time, and several studies were conducted to examine the interplay between 

three patent characteristics (i.e., number of claims, citations, length of patent prosecution). 

 The analyses of general trends were supplemented by two studies designed to evaluate 

the distribution of biotech patenting among patent owners and across distinct areas of research 

and development.  The analysis ranged in scope from studies of discrete areas of research and 

development (e.g., diabetes research) to the full complement of biotechnology patents in the 

database.  Patent ownership patterns were using our data on assignees.  The distribution of 

patents across different subject areas was evaluated using PTO subclasses.  In addition, we 

utilized a variety of statistical methods, particularly standard hypothesis testing and linear 

regression, to examine the results of three existing studies of U.S. patents.  The details of these 

methods and their implications are integrated into our discussion of the data.   

 
 

 
 
 
 

                                                 
229  We chose not to study the other patent characteristics available in the database for three primary reasons.  
First, studying certain variables, such as search classes, would have added nothing to the analysis because examiners 
follow relatively rigid PTO rules that are determined by the art unit in which the examiner works.  Second, we 
simply were not interested in studying some of the data (e.g., PTO examiner performance or statistics).  Third, some 
data (e.g., other subclasses listed in each patent) simply would have been very difficult to study in a meaningful way 
without substantial additional work and the benefits we perceived were relatively small. 


